Decoherence between the initial and final state radiation in a dense QCD medium

Mauricio Martinez Guerrero

N. Armesto, H. Ma, Y. Mehtar-Tani and C. A. Salgado, JHEP 1312 (2013) 052

3rd Workshop on Jet Modification in the RHIC and LHC Era Wayne State Univ., Detroit MI, USA 18-20 August, 2014

Outline

- Brief review of color coherence in pQCD
- Medium induced radiation and color decoherence
- Color (de)coherence between the initial and final state radiation
- Generalization to pA collisions

Brief review of color coherence in pQCD

What is a jet?

- A jet is born as a *hard parton* which fragments into many partons when the time goes by decreasing virtuality down to a non-perturbative scale where *hadronization* happens.
- Parton shower is well described within pQCD
- *LPHD:* hadronization does not affect exclusive observables: jet shape, energy distribution, etc.

What is a jet?

Large domain of pQCD

Inclusive jet observables are determined by two scales

Jet transverse mass $M_{\perp} = E \, \theta_{jet}$ Non perturbative scale $Q_0 \sim \Lambda_{QCD}$

Parton shower: basic building blocks

Markovian Process
 Building block for QCD
 evolution
 MC implementation

Interference pattern between Initial-Final State

Multiplicity and color coherence

$$\begin{split} N^{coh} &\propto \alpha_s^2 \int_0^{E_{jet}} \frac{d\omega_1}{\omega_1} \int_{\mu/\omega_1}^1 \frac{d\theta_1}{\theta_1} \int_0^{\omega_1} \frac{d\omega_2}{\omega_2} \int_{\mu/\omega_2}^{\theta_1} \frac{d\theta_2}{\theta_2} &= \frac{1}{4!} \alpha_s^2 \log^4 E_{jet}/\mu \\ N^{incoh} &\propto \alpha_s^2 \int_0^{E_{jet}} \frac{d\omega_1}{\omega_1} \int_{\mu/\omega_1}^1 \frac{d\theta_1}{\theta_1} \int_0^{\omega_1} \frac{d\omega_2}{\omega_2} \int_{\mu/\omega_2}^1 \frac{d\theta_2}{\theta_2} &= \frac{2}{4!} \alpha_s^2 \log^4 E_{jet}/\mu = 2N^{coh} \end{split}$$

QCD coherence leads to depletion of soft gluons!

Multiplicity and color coherence

Recall DGLAP (no-angular ordering)

$$\frac{d}{d\ln M_{\perp}} D_A^B(x, M_{\perp}) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_A^C(z) D_C^B(x/z, M_{\perp})$$

MLLA (angular ordering)

$$\frac{d}{d\ln M_{\perp}} D_A^B(x, M_{\perp}) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} P_A^C(z) D_C^B(x/z, z M_{\perp})$$
$$z \sim \frac{1}{\sqrt{Q}} \qquad \qquad \theta' \sim \theta_{jet} \rightarrow M'_{\perp} = \omega' \theta' \sim \omega' \theta_{jet} = z M_{\perp}$$

Color coherence consequences

MC implementation

Khoze, Ochs, Wosiek, hep-ph/0009298

Experimental evidence

Color coherence consequences

Fragmentation function becomes softer for heavy quarks than for light quarks in the forward region

Measurements of flavor dependent fragmentation functions for charged particles in $Z_0 \rightarrow q \overline{q}$

OPAL Collaboration, Eur. Phys. J. C7 (1999) 369, Dokshitzer, Khoze, Muller and Troyan, Basics of pQCD

Medium induced radiation and color decoherence

Jets in Nucleus-Nucleus Collisions

Medium induced gluon radiation

Longitudinal coherence

- Landau-Pomeranchuk-Migdal effect
- induces a characteristic formation time larger than mean free path

$$k_{ind}^{2} = \hat{q} \tau_{form} \qquad \tau_{form} = \sqrt{\frac{w}{\hat{q}}}$$

$$\tau_{form} = \frac{\omega}{k_{ind}^{2}} \implies \tau_{form} = \sqrt{\frac{w}{\hat{q}}}$$

$$k_{ind}^{2} = \sqrt{\hat{q}\omega}$$

$$\tau_{form} \sim L \Rightarrow Q_s^2 = \hat{q}L$$

Minimal angle of emission

$$\theta_c = \frac{1}{\sqrt{\hat{q}L^3}}$$

Baier, Dokshitzer, Mueller, Peigné, Schiff (1997-2000), Zakharov (1996), Wiedemann (2000), Gyulassy, Levai, Vitev (2000), Arnold, Moore, Yaffe (2001)

Medium induced gluon radiation

Longitudinal coherence

- Landau-Pomeranchuk-Migdal effect
- induces a characteristic formation time larger than mean free path

Baier, Dokshitzer, Mueller, Peigné, Schiff (1997-2000), Zakharov (1996), Wiedemann (2000), Gyulassy, Levai, Vitev (2000), Arnold, Moore, Yaffe (2001)

Jets in a QCD medium: Multiscale problem

$$M_{\perp} \equiv E \,\theta_{jet} \\ Q_0 \sim \Lambda_{\rm QCD} + \begin{array}{l} Q_s \equiv \sqrt{\hat{q}L} \equiv m_D \,\sqrt{N_{\rm scat}} \\ r_{\perp \, jet}^{-1} \equiv (\theta_{jet}L)^{-1} \end{array}$$

New scales:

The antenna inside the QCD medium

jet remains coherent

subjets decohere

The scale Q_s⁻¹ determines the number of independent color sources that can are resolved by the medium.

• :: medium induced radiation (BDMPS spectrum)

Armesto, Milhano, Salgado, Mehtar-Tani, Tywoniuk, Iancu, Casalderrey (2010-2013).

Implications of QCD decoherence

$$\Delta_{\rm med} = 1 - e^{-\Theta_{\rm jet}^2/\theta_c^2}$$
$$\theta_c = 1/\sqrt{\hat{q}L^3} \qquad \text{jet definition } (\Theta_{\rm jet}=R)!$$

Casalderrey et. Al

- θ=θjet < θc: unresolved jet constituent, fragment as in vacuum, no medium effect for z> Qo/Eθc.
- $\theta = \theta_{jet} > \theta_c$: jet constituents resolved, soft decoherent radiation at large angles.

Further theoretical advances

Probabilitistic parton picture: Blaizot, Dominguez, Mehtar-Tani, Iancu Democratic branching and turbulence: Blaizot, Mehtar-Tani, Iancu Renormalization of the jet quenching parameter: Iancu, Mehtar, Blaizot Running coupling effects: Iancu, Triantafyllopoulos Jet decoherence in PbPb @LHC: Tywoniuk, Mehtar-Tani Angular structure of in medium parton cascade @LHC: Blaizot, Mehtar, Torres Gluon radiation and color coherence beyond gluon approximation: Apolinario, Armesto, Milhano, Salgado

What about the *dilute-dense* regime?

Color (de)coherence between the initial and final state radiation

A relevant configuration to study coherence

A relevant configuration to study coherence

Shockwave

A relevant configuration to study coherence

Color decoherence between the initial and final state radiation

N. Armesto, H. Ma, M. Martinez, Y. Mehtar-Tani, C. Salgado *N=1 Opacity expansion:* PLB 717 (2012)280 *Multiple soft scatterings:* JHEP 1312(2013)052 → *Today!!*

Relevant configuration to investigate:

Medium modifications to the initial state radiation *Energy Loss problem* in the dilute-dense regime *Finite length/energy* effects in pA collisions

Semi-Classical methods of pQCD

Evolution of the gauge field: $\begin{bmatrix} D_{\mu}, F^{\mu\nu} \end{bmatrix} = \mathcal{J}^{\nu}$ Color charge conservation: $\begin{bmatrix} D_{\mu}, \mathcal{J}^{\mu} \end{bmatrix} = 0$ Linearizing around a background field: $\mathcal{A}^{\mu} = A^{\mu}_{med} + a^{\mu}$ $\Box_{x}a^{i} - 2ig[\mathcal{A}^{-}_{med}, \partial_{-}a^{i}] = \mathcal{J}^{i} - \partial^{i}\left(\frac{\mathcal{J}^{+}}{\partial_{-}}\right)$ LC gauge

Reduction formula: $\mathcal{M}^{a}_{\lambda} = \lim_{k^{2} \to 0} \int d^{4}x e^{ik \cdot x} \Box_{x} \mathcal{A}^{a}_{\mu}(x) \epsilon^{\mu}_{\lambda}(\vec{k})$

Our goal is to obtain the single gluon spectrum

$$(2\pi)^3 2k^+ \frac{dN}{d^3\vec{k}} = \sum_{\lambda=1,2} \left\langle \left\langle |\mathcal{M}^a_\lambda(\vec{k})|^2 \right\rangle_p \right\rangle_A$$

F. Gelis, R. Venugopalan, NPA 776 (2006), 135 J. Blaizot, F. Gelis, R. Venugopalan, NPA 743 (2004), 13

Propagators

Gluon spectrum

BDMPS-Z + vacuum

P⊤ broadening of ISR

Interferences in the medium: New!!

Armesto et. al, JHEP 1312 (2013) 052

Gluon spectrum I: direct emissions

Gluon spectrum I: direct emissions

~ $\int \frac{d^2 \mathbf{k}'}{(2\pi)^2} \frac{\mathcal{P}(\mathbf{k}' - \bar{\mathbf{\kappa}}, L^+)}{\mathbf{k}'^2} \mathbf{k}'$

$$k_T \rangle \sim Q_s = \sqrt{\hat{q}L^+}$$

Armesto et. al, JHEP 1312 (2013) 052

Guon spectrum II: Interferences

Transverse size of the Quark-gluon system

- If hard scattering is the largest scale:
- \Rightarrow Insensitive to the medium
- If typical medium induced momentum is the largest scale
- \Rightarrow Medium is able to resolve the qg system

Guon spectrum II: Interferences

The Color correlation of the Quark-gluon system is measured by

$$\mathcal{K}(x^+, \boldsymbol{x}; y^+, \boldsymbol{y} | k^+) = \int_{\boldsymbol{r}(y^+) = \boldsymbol{y}}^{\boldsymbol{r}(x^+) = \boldsymbol{x}} \mathcal{D}\boldsymbol{r} \exp\left[\int_{y^+}^{x^+} d\xi \left(i\frac{k^+}{2}\dot{\boldsymbol{r}}^2(\xi) - \frac{1}{2}n(\xi)\sigma\left(\boldsymbol{r}(\xi)\right)\right)\right]$$

- Describes the Brownian motion of the gluon
- Harmonic oscillator approximation: $n\sigma(\mathbf{r}) \approx \hat{q}\mathbf{r}^2$
- Two extreme limits

 \Rightarrow High Energy Limit (Shockwave) $\tau_f \sim \sqrt{\omega/\hat{q}} \gg L^+$

7

⇒"Infinite" medium length

$$T_f \sim \sqrt{\omega/\hat{q}} \ll L^+$$

Armesto et. al, JHEP 1312 (2013) 052

Gluon spectrum: High energy limit (shockwave)

In the absence of a medium we recover the vacuum coherence pattern

Gluon spectrum: High energy limit (shockwave)

- Medium acts as a unique scattering center
- Interferences are suppressed if $\mathbf{k} < Q_s$
- Vacuum color coherence is reestablished for $\mathbf{k} > Q_s$

Contact with high energy limit: Kovchegov-Mueller (1998)

Armesto et. al, JHEP 1312 (2013) 052

 $\Theta_{q\bar{q}}$

Gluon spectrum: Infinite medium lenght

• Similar results in the incoherent regime: medium opens the phase space of emissions up to a maximum angle.

 $heta_{max} = Q_s/\omega$

Geometrical Separation

Armesto et. al, JHEP 1312 (2013) 052

 $\Theta_{qar{q}}$

Generalizing to pA collisions: first results

- We perform a systematic eikonal expansion to the gluon propagator in the background field.
- We study soft gluon production in pA collisions beyond eikonal accuracy.

$$k^{+} \frac{d\sigma}{dk^{+} d^{2}\mathbf{k}} = \frac{1}{\mathbf{k}^{2}} \int \frac{d^{2}\mathbf{q}}{(2\pi)^{2}} \varphi_{p}(\mathbf{q}) (\mathbf{k} - \mathbf{q})^{2} \int_{\mathbf{b},\mathbf{r}} e^{-i(\mathbf{k} - \mathbf{q})\cdot\mathbf{r}} S_{A}(\mathbf{r}, \mathbf{b}) + O\left(\left(\frac{L^{+}}{k^{+}} \partial_{\perp}^{2}\right)^{2}\right)$$

Recover the k_T factorization formula

• Some spin asymmetries

$$A_N(\mathbf{k}) \equiv \frac{\frac{d\sigma^{\uparrow}}{d^2 k \, dy} - \frac{d\sigma^{\downarrow}}{d^2 k \, dy}}{\frac{d\sigma^{\uparrow}}{d^2 k \, dy} + \frac{d\sigma^{\downarrow}}{d^2 k \, dy}} = \frac{\frac{d\sigma^{\uparrow}}{d^2 k \, dy}(\mathbf{k}) - \frac{d\sigma^{\uparrow}}{d^2 k \, dy}(-\mathbf{k})}{\frac{d\sigma^{\uparrow}}{d^2 k \, dy}(\mathbf{k}) + \frac{d\sigma^{\uparrow}}{d^2 k \, dy}(-\mathbf{k})}$$

Polarized target: $p + A^{\uparrow} \rightarrow g + X$ Polarized projectile: $p^{\uparrow} + A \rightarrow g + X$

Polarized gluon production from unpolarized pA: $p + A \rightarrow g^{\pm} + X$

The eikonal contribution *vanishes* exactly while the leading dominant terms are the *next to eikonal* terms (finite size/medium effects)!!!

Conclusions

- We investigate medium modifications to the **color** coherence pattern between the initial and final state radiation.
- There is a gradual onset of *decoherence* between both emitters due to multiple scatterings with the medium

 \Rightarrow Opening of phase space for *large angle* emissions

- In pA collisions beyond the eikonal approximation:
 - Soft gluon production: non eikonal corrections to the CGC are suppressed.
 - Some spin asymmetries: non eikonal corrections are the dominant contribution.

Outlook (keep tuned!!!)

- Energy loss in high energy forward processes in pA collisions: Kopeliovich et. Al, Strickman et. al., Kaidalov et. al., Peigne & Arleo, Liou & Mueller.
- Inclusion of quarks. Forthcoming
- Single inclusive gluon production in the hybrid formalism beyond eikonal accuracy. Forthcoming

Semi-classical approach to gluon production I Our goal is to obtain the single gluon spectrum $(2\pi)^3 2k^+ \frac{dN}{d^3 \vec{k}} = \sum_{\lambda=1,2} \left\langle \left\langle \mathcal{M}^a_{\lambda}(k) \right\rangle_p \right\rangle_A \quad \text{Scattering amplitude}$ **Medium**: Classical background field $A^{\mu}_{(0)}$ $-\partial_{\mathbf{x}}A_{a.(0)}^{-} = \rho_{a}(x)$ $\langle A_{a,(0)}^{-}(x^{+},\boldsymbol{q})A_{b,(0)}^{*,-}(x',\boldsymbol{q}')\rangle = \delta_{a} n(x^{+})\delta(x^{+}-x'^{+})\delta(\boldsymbol{q}-\boldsymbol{q}')\mathcal{V}^{2}(\boldsymbol{q})$ 00000 000000 2000 Density of scattering centers **Debye** potential Highly energetic particle: Classical current $\mathcal{J}^{\mu}_{a}(x) = g v^{\mu} \, \delta^{(3)}(\vec{x} - \vec{v}t) \, \mathcal{U}(x^{+}, 0, \boldsymbol{x})_{ab} \, Q_{b}$ 1+ 0 $\mathcal{U}(x^+, 0, \boldsymbol{x}) = \mathcal{P}_+ \exp\left\{ig \int_0^{x^+} dz^+ T \cdot A(z^+, \boldsymbol{x})\right\}^{ab}$

Blaizot, Gelis, Venugopalan, NPA 743 (2004) 13-56

Semi-classical approach to gluon production II

Expand *perturbatively* the gluon field as $A_a^{\mu} \approx \underbrace{A_{(0)}^{\mu}}_{\mathcal{O}(q^{-1})} + \underbrace{a_a^{\mu}}_{\mathcal{O}(g)}$

 a_a^{μ} is a *fluctuation* around the background field and it is a solution of the Classical Yang-Mills Eqs. with retarded boundary conditions

via the LSZ reduction formula, the scattering amplitude in the LC gauge is

$$\mathcal{M}_{\lambda}^{a} = \lim_{x^{+} \to \infty} \int d^{2}x \, d^{4}y \, e^{i(k^{-}x^{+} - \mathbf{k} \cdot \mathbf{x})} \, e^{ik^{+}y} \, \mathcal{G}_{ab}(x^{+}, \mathbf{x}; y^{+}, \mathbf{y}) \, \mathcal{J}_{b}(y) \, \epsilon_{\lambda}$$
Retarded gluon propagator in a background field Color rotated current

Blaizot, Gelis, Venugopalan, NPA 743 (2004) 13-56

Semi-classical approach to gluon production II

Expand *perturbatively* the gluon field as $A_a^{\mu} \approx \underbrace{A_{(0)}^{\mu}}_{\mathcal{O}(q^{-1})} + \underbrace{a_a^{\mu}}_{\mathcal{O}(g)}$

 a_a^{μ} is a *fluctuation* around the background field and it is a solution of the Classical Yang-Mills Eqs. with retarded boundary conditions

via the LSZ reduction formula, the scattering amplitude in the LC gauge is

$$\mathcal{M}_{\lambda}^{a} = \lim_{x^{+} \to \infty} \int d^{2} \boldsymbol{x} \, d^{4} y \, e^{i(k^{-} \boldsymbol{x}^{+} - \boldsymbol{k} \cdot \boldsymbol{x})} \, e^{ik^{+} \boldsymbol{y}^{-}} \mathcal{G}_{ab}(x^{+}, \boldsymbol{x}; \boldsymbol{y}^{+}, \boldsymbol{y}) \, \mathcal{J}_{b}(\boldsymbol{y}) \cdot \boldsymbol{\epsilon}_{\lambda}$$

$$\mathcal{G}_{ab}(x^{+}, \boldsymbol{x}; \boldsymbol{y}^{+}, \boldsymbol{y}) = \int_{\boldsymbol{z}(y^{+}) = \boldsymbol{y}}^{\boldsymbol{z}(x^{+}) = \boldsymbol{x}} D\boldsymbol{z}(z^{+}) \exp\left[i\frac{k^{+}}{2}\int_{y^{+}}^{x^{+}} dz^{+} \dot{\boldsymbol{z}}^{2}\right] \mathcal{U}_{ab}(x^{+}, \boldsymbol{y}^{+}, \boldsymbol{z}(z^{+}))$$

Blaizot, Gelis, Venugopalan, NPA 743 (2004) 13-56

Scattering amplitude from CYM Eqs.

Incoming parton

Armesto et. al, JHEP 1312 (2013) 052

Gluon spectrum: incoherent regime

- Interferences play a role at early-times
- Gluon loses vacuum coherence
 - \Rightarrow Open phase space at large angle emissions up to $\theta_{max} = Q_s/\omega$
- Typical ``medium induced" gluon momentum ~ $Q_s=\hat{q}L$

Next-to-Eikonal exp. to the gluon propagator

Next-to-Eikonal exp. to the gluon propagator

KT factorization beyond Eikonal accuracy

SSA: Polarized Target

$$k^{+} \left(\frac{d\sigma^{\uparrow}}{dk^{+} d^{2}\mathbf{k}} - \frac{d\sigma^{\downarrow}}{dk^{+} d^{2}\mathbf{k}} \right) = \frac{2}{\mathbf{k}^{2}} \frac{L^{+}}{k^{+}} \int \frac{d^{2}\mathbf{q}}{(2\pi)^{2}} \varphi_{p}(\mathbf{q}; x_{\text{cut}})$$

$$\times \left\{ \left[(\mathbf{k} - \mathbf{q})^{2} \mathbf{k}^{j} + \mathbf{k}^{2} (\mathbf{k}^{j} - \mathbf{q}^{j}) \right] \int d^{2}\mathbf{r} \cos\left(\mathbf{r} \cdot (\mathbf{k} - \mathbf{q})\right) \int d^{2}\mathbf{b} \ \mathcal{O}_{(1)}^{j}(\mathbf{r}, \mathbf{b}, \mathbf{s})$$

$$+ \mathbf{k} \cdot (\mathbf{k} - \mathbf{q}) \int d^{2}\mathbf{r} \sin\left(\mathbf{r} \cdot (\mathbf{k} - \mathbf{q})\right) \int d^{2}\mathbf{b} \ \mathcal{O}_{(2)}(\mathbf{r}, \mathbf{b}, \mathbf{s}) \right\} + O\left(\left(\frac{L^{+}}{k^{+}} \partial_{\perp}^{2}\right)^{2}\right)$$

- Eikonal corrections cancel exactly due to the rotational symmetry around the center of the target.
- First subleading Non-Eikonal corrections turn out to be the dominant terms.

Final interactions play an important role

Similar behavior observed with higher twist contributions

SSA: Longitudinal Polarized Gluon Production

$$\begin{aligned} k^{+} \frac{d\sigma^{+}}{dk^{+} d^{2}\mathbf{k}} - k^{+} \frac{d\sigma^{-}}{dk^{+} d^{2}\mathbf{k}} &= \frac{L^{+}}{k^{+}} \int \frac{d^{2}\mathbf{q}}{(2\pi)^{2}} \varphi_{p}(\mathbf{q}; x_{\text{cut}}) \mathbf{q}^{2} \int d^{2}\mathbf{b} \int d^{2}\mathbf{r} \ e^{-i(\mathbf{k}-\mathbf{q})\cdot\mathbf{r}} \\ &\times \left\{ -i \left[\left(\frac{\mathbf{k}^{i}}{\mathbf{k}^{2}} - \frac{\mathbf{q}^{i}}{\mathbf{q}^{2}} \right) \epsilon^{ij} - 2 \frac{\left(\epsilon^{il} \mathbf{k}^{i} \mathbf{q}^{l} \right)}{\mathbf{k}^{2} \mathbf{q}^{2}} \mathbf{k}^{j} \right] \mathcal{O}_{(1)}^{j}(\mathbf{r}, \mathbf{b}) \\ &- \frac{\left(\epsilon^{ij} \mathbf{k}^{i} \mathbf{q}^{j} \right)}{\mathbf{k}^{2} \mathbf{q}^{2}} \mathcal{O}_{(2)}(\mathbf{r}, \mathbf{b}) \right\} + O\left(\left(\frac{L^{+}}{k^{+}} \partial_{\perp}^{2} \right)^{2} \right) .\end{aligned}$$

- Shockwave contribution vanishes exactly again!!!.
- Longitudinal polarization of the gluon (via polarized hadrons) is a good observable to study the structure of the next to eikonal corrections.