

Heavy-flavour and quarkonium production at RHIC and LHC.

Elena Bruna (INFN Torino)

3rd Workshop on Jet Modification in the RHIC and LHC Era, Wayne State Univ., August 2014

Open heavy-flavours

- tomographic probes of the QGP -

Why Heavy Flavours (charm and beauty)?

Heavy quarks are produced in initial high-Q² processes

• pp: test for pQCD At LHC, larger cross-section: $\sigma_c(LHC) \sim 5-10 \sigma_c(RHIC)$ $\sigma_b(LHC) \sim 50 \sigma_b(RHIC)$ Reference for pA and AA

- pPb: reference for cold nuclear matter effects (and more...)
- PbPb: "self-generated" probes exposed to the medium evolution.

Thermal production negligible?

Questions:

How do partons interact with the medium? How does the energy loss depend on path-length, medium density, parton mass? How to disentangle cold from hot nuclear state effects?

Pre-Equilibrium Phase (< τ_o)

b quark

JHEP 07 (2012) 191

Heavy Flavours and Heavy-Ion Collisions

- How do partons interact with the medium?
 - Energy loss mechanism via:
 radiative gluon emission and elastic collisions
- What does the energy loss depend on?
 - Medium density, path-length
 - Colour-charge, Mass ("dead-cone")

the medium

 $\langle \Delta E \rangle \propto \alpha_{\rm s} C_{\rm R} \hat{q} L^2$ $\Delta E_{g} > \Delta E_{u,d} > \Delta E_{c} > \Delta E_{b}$ Dokshitzer and Kharzeev, PLB 519 (2001) 199.

- Do heavy flavours participate in collective motion?
 - at low p_T , this gives information on the transport properties of the medium
- How to disentangle cold and dense hot nuclear matter effects?
 - PbPb collisions: nuclear matter under extreme conditions of temperature/energy density. From Lattice QCD the phase transition occurs at: $T_c \sim 170$ MeV, $\epsilon_c \sim 0.6$ GeV/fm^{3,} these conditions are reached at RHIC and the LHC
 - pPb collisions: control experiment used as reference

Measurements of Heavy Flavours at RHIC and LHC in A-A (and pp)

Elena Bruna (INFN)

Measurements of Heavy Flavours at RHIC and LHC in A-A (and pp)

Cross sections at both RHIC and LHC energies well described by pQCD predictions

pp: Test for pQCD and reference for pA and AA

pp: D-meson and J/ ψ yields vs event multiplicity

D and J/ ψ measurements

CMS Coll., JHEP 04 (2014) 103

Increasing trend with multiplicity for both D mesons and J/ ψ in pp collisions \rightarrow MPI are dominating the high-multiplicity events and affecting heavyflavour production

pA: control experiment (and more...)

 $R_{pPb}{\sim}1$ for D and B mesons in p-Pb collisions Models with CNM describe the data within the uncertainties

Elena Bruna (INFN)

pA: control experiment (and more...)

RHIC: R_{dAu} >1 for electrons from heavy-flavours at low p_T . Compatible with radial flow? LHC: smaller effect could be due to harder initial spectrum

Elena Bruna (INFN)

Different *x* regimes explored in different rapidity ranges with HF probes \rightarrow shadowing/saturation relevant at low p_T at the LHC

Data described within uncertainties by different models of initial state effects

pA: control experiment (and more...)

is HF production affected by the nucleus?

Forward and backward rapidity at RHIC

Models based on different initial-state effects fail to reproduce d+Au data at both forward and backward rapidities at RHIC energies

pA: more differential measurements

mid-rapidity electrons (from HF) – forward-rapidity muons (from HF)

peak at π is suppressed in d+Au compared to p+p

Suppression in d+Au:

cold nuclear matter modification of $c\overline{c}$ pairs (low-x gluons dominating the away side and suffering more shadowing? initial/final state effects ?)

PHENIX Coll.: arXiv:1311.1427v1

pA: more differential measurements

Indications for long-range correlations in $\Delta\eta$ for two-particle correlations triggered by heavy-flavour decay electrons.

Similar to what was observed for light particles. Same mechanism (CGC/hydro) for light and heavy flavours?

B.Arbuzov et al, Eur.Phys.J. C71 (2011) 1730 K. Dusling and R.Venugopalan, arXiv:1302.7018. S.Alderweireldt and P.Van Mechelen, arXiv:1203.2048 K.Werner et al, P.R.L. 106 (2011) 122004

ALICE: e-h correlations

p-Pb collisions in two multiplicity ranges:0-20% (high multiplicity)60-100% (low multiplicity)

Jet contribution reduced by subtracting low-multiplicity events

pp and pPb: D-h correlations

ALI-PREL-78598

pp: compatible within uncertainties with expectations from different Pythia tunes

Compatibility within uncertainties between pp collisions at \sqrt{s} = 7 TeV and p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV after baseline subtraction

AA: D-meson R_{AA} at RHIC and LHC

Similar suppression in central A-A collisions at high p_T Differences at low p_T : radial flow? Shadowing? Recombination? Crucial to go to $p_T \sim 0$ at the LHC

Leptons from HF at RHIC

Different suppression trend at 62 and 200 GeV.

Different effects at two energies: interplay between initial-state k_t-broadening, final-state flow and energy loss

Note: 62 GeV pp reference comes from ISR. More data at 62 GeV

Heavy-flavour leptons at the LHC

Similar suppression of electrons and muons from heavy-flavour decays at LHC

First measurement of electrons from beauty decays in Pb-Pb collisions. Hint of suppression for p_T >3 GeV/c

R_{AA} : D mesons and charged hadrons

$\textbf{R}_{\textbf{AA}}\textbf{:}$ D mesons and non-prompt J/ ψ

Mass dependence of energy loss?

similar kinematics for D and B mesons (**p_T>~10 GeV/c**) different y ranges for D and non-prompt J/ ψ

Indication of a difference between charm and beauty suppression in central collisions

$\textbf{R}_{\textbf{AA}}\textbf{:}$ D mesons and non-prompt J/ ψ

Mass dependence of energy loss?

different y ranges for D and non-prompt J/ ψ

pQCD in-medium energy loss model based on mass dependent energy loss in agreement with data

Beauty jets in Pb-Pb collisions

B-jet tagging method based on displaced secondary vertices in jets.B-jet fraction based on template fits to the invariant mass of secondary vertices.

Quark-jets tagged.

B-jet suppression (0-10%) is consistent with inclusive jet (0-5%) suppression. Quark mass effect negligible at high jet p_T .

System size dependence of R_{AA} at RHIC

CENTRAL d+Au ~ PERIPHERAL Cu+Cu

CENTRAL Cu+Cu ~ MID Au+Au

System size dependence of R_{AA} at RHIC

From **d+Au** to **peripheral Cu+Cu**: enhancement effects dominating

From Cu+Cu to central Au+Au: suppression dominating

U+U: could have 20% higher energy density than Au+Au similar D⁰ suppression as for Au+Au, extends the trend

Charm collective motion

Elena Bruna (INFN)

R_{AA} and **v**₂: constraints to models

Theoretical models reproduce reasonably well R_{AA} but are challenged by simultaneously reproducing results from heavy-flavour R_{AA} and v_2 . Differential observables needed to constrain models

BAMPS: Fochler et al., J. Phys. G38 (2011) 124152 POVVLANG: Alberico et al., Eur.Phys.J C71 (2011) 1666 UrQMD: T. Lang et al., arXiv:1211.6912 [hep-ph]; T. Lang et al., arXiv:1212.0696 [hep-ph]. TAMU: Rapp, He et al., Phys. Rev. C 86 (2012) 014903 WHDG: Horowitz et al., JPhys G38 (2011) 124114 Aichelin et al.:Phys. Rev. C79 (2009) 044906 J. Phys. G37 (2010) 094019

R_{AA} : constraints to models

Theoretical models (i.e. TAMU) can reproduce the general R_{AA} trends at both energies in the low p_T range common to both

Quarkonia

- thermometer of the QGP -

Quarkonium in the QGP

What happens to a $q\overline{q}$ pair in the Quark Gluon Plasma?

The binding of the $q\overline{q}$ pair is subject to the effects of the colour screening

Quarkonium in the QGP: suppression and/or enhancement?

Increasing the energy of the collision the $c\overline{c}$ pair multiplicity increases

In most central	SPS	RHIC	LHC
AA collisions	20 GeV	200GeV	2.76TeV
N _{ccbar} /event	~0.2	~10	~60

P. Braun-Muzinger and J. Stachel, Phys. Lett. B490(2000) 196, R. Thews et al, Phys.ReV.C63:054905(2001)

This mechanism can lead to charmonium enhancement via (re)combination of $c\overline{c}$ pairs at hadronization or during QGP stage

If so, charmonium is no longer a "thermometer" of QGP ...but becomes an observable for the phase boundary

$J/\psi R_{AA}$ at RHIC and LHC

J/ψ less suppressed at LHC than at RHIC.

Could it be (re)combination at LHC energies?

-i.e. quarkonium formed by (re)combination of $c\overline{c}$ quarks close in momentum

-if so, it should be at low $\ensuremath{p_{\text{T}}}$

$J/\psi R_{AA}$ at RHIC and LHC

J/ψ less suppressed at LHC than at RHIC.

Could it be (re)combination at LHC energies?

-i.e. quarkonium formed by (re)combination of $c\overline{c}$ quarks close in momentum -if so, it should be at low p_T

Strong dependence of J/ ψ suppression vs $p_T!$

Models: ~50% of low- $p_T J/\psi$ are produced via (re)combination, while at high p_T the contribution is negligible

Elena Bruna (INFN)

$J/\psi R_{AA}$ at RHIC and LHC

At high J/ ψ p_T?

strong J/ ψ suppression at LHC (re-combination should not play a role at high p_T)

J/ψ less suppressed at LHC than at RHIC.

Could it be (re)combination at LHC energies?

-i.e. quarkonium formed by (re)combination of $c\overline{c}$ quarks close in momentum

-if so, it should be at low $p_{\scriptscriptstyle T}$

Collision system scan

 J/ψ at RHIC

Beam energy scan

Similar suppression trends for different energies and collision systems at RHIC

Important testing ground to tune models with different energies/systems

J/ψ flow at LHC

Results support production in QGP or at chemical freeze-out at the LHC RHIC: compatible with $v_2(J/\psi) \sim 0$ Wide p_T range explored: from J/ ψ regeneration to path-length dependence of charm energy loss

Bottomonium at the LHC

 $\Upsilon(2S)$ suppressed more suppressed than $\Upsilon(1S)$ (also in periph.). $\Upsilon(3S)$ melted. $\Upsilon(1S)$ suppression might be compatible with feed-down suppression (50%). Possibly $\Upsilon(1S)$ dissociation threshold still beyond LHC reach \rightarrow wait for LHC full energy!

Bottomonium at the LHC

Model does not reproduce the strong rapidity dependence of the R_{AA} and underestimates the Y(1S) suppression at forward rapidity: Regeneration? CNM?

Bottomonium at RHIC

Cold Nuclear Matter effects in quarkonium production

 J/ψ production is modified also in pA because of CNM effects Reasonable agreement with theoretical predictions (shadowing/e.loss depends on y)

Contribution of CNM effects in Pb-Pb extrapolated from p-Pb. Evidence for hot nuclear matter effects.

Other mechanisms needed to explain $\psi(2S)$ behaviour?

for J/ ψ and ψ (2S)

CNM for Y

Y in pPb vs event multiplicity:

Excited/ground state ratio seems to vary wrt to event multiplicity (at midrapidity) in pPb and pp

Hint of Y suppression at forward rapidities

Qualitative agreement with models within the uncertainties.

Conclusions

- Large array of heavy flavour measurements at RHIC and LHC
 - different energies and collision systems
 - p(d)-A is the system to study CNM effects, but also different x regimes and possible collective effects on heavy flavours
- Open charm/beauty strongly affected by the medium
 - from RHIC to LHC: similar suppression at high p_{T} , enhancement at low p_{T} at RHIC
 - mass dependence of suppression trends in agreement with models
 - positive v_2 suggests collective motion for c quarks at low p_T at the LHC
- Quarkonia
 - from RHIC to LHC : J/ ψ (re)combination effects at LHC, less relevant at RHIC?
 - Y hierarchy in suppression according to their binding energies
- Next: more precise measurements to sharpen the conclusions
 - RHIC: High-statistics runs, new detectors and future upgrades
 - LHC: Run 2 and detectors/machine upgrades

D- hadron azimuthal correlations: pp vs p-Pb

Compatibility within uncertainties between pp collisions at \sqrt{s} = 7 TeV and p-Pb collisions at \sqrt{s}_{NN} = 5.02 TeV after baseline subtraction

QpPb for D mesons

RpPb: ALICE and LHCb

