Jets at the LHC: Where does the lost energy go?

High p_T charged particles

Suppression of high p_T particles in AA collisions

Why do we study jet quenching with jets?

 Theoretically calculable, infra-red/collinear safe

 Allow the use of a well defined object (by algorithm) to study "the final parton energy" and how the energy is distributed
with respect to the direction of

http://www.digitalpicturezone.com/digital-pictures/30-colorful-examples-of-high-speed-bullet-photography/

with respect to the direction of the out-going parton

 Allow us to select quenched jets (i.e., jets from partons which have lost a lot of energy when passing through the medium)

Charged particle spectra in pp

Charged particle spectra in pp and PYTHIA agree within 20-60%

Jet spectra in pp

Where does the lost energy go?

- Reconstructed jet analysis
 - Jet spectra / R_{AA}
 - Dijet / photon-jet asymmetry

- Energy redistribution inside the jet cone:
 - Jet FF and jet shape

- Energy distribution out of the jet cone
 - Missing p_T measurements

Charged particle and jet R_{pPb} (QM2014)

Need to check jet fragmentation function

Jet spectra seem to be under control

Preliminary ATLAS and CMS RAA

Preliminary ATLAS and CMS RAA

Preliminary ATLAS and CMS RAA

Weak dependence on jet rapidity

Quark/gluon fraction (as well as the slope of the jet pT spectra) changes v.s. y

Preliminary Jet R_{AA} at LHC

ALICE new result 10-30%

ALICE Preliminary Pb-Pb \ $s_{NN} = 2.76 \text{ TeV}$ anti- k_T R = 0.2 $|m_{jet}| < 0.5$ $p_{T,charged}^{leading} > 5 \text{ GeV/}c$ 10 - 30%

ATLAS new results on jet RAA

 R_{AA} raises as a function of jet p_T

80

90

 R_{AA} v.s p_T & y

100 110 120

 $p_{\text{T,iet}} \, (\text{GeV}/c)$

ALI-PREL-77644

Jet R_{AA} in PbPb collisions at LHC

Establish a rising trend from low to high jet p_T

Jet R_{AA} in PbPb collisions at LHC

It would be nice to have low p_T CMS data / ATLAS R_{AA} with R=0.2 / ALICE high p_T data

Jet R_{AA} in PbPb collisions at LHC

Dijet asymmetry A_J in RHIC and LHC

$$A_J = (p_{T,1} - p_{T,2})/(p_{T,1} + p_{T,2})$$

Anti-k_T R=0.2, p_{T,1}>16 GeV & p_{T,2}>8 GeV with p_T^{cut}>2 GeV/c

Dijet energy ratio (imbalance)

- Energy imbalance increases with centrality
- Very high p_⊤ jets are also quenched

PLB 712 (2012) 176

Fraction of jets with an away side jet

• Given a leading jet with $p_T > 150$ GeV/c, >90% of them has an away side partner

Fake away side jet rate is < 4%

γ -"inclusive jet" correlations

- Photons serve as an unmodified energy tag for the jet partner
- Ratio of the p_T of jets to photons $(x_{J_{\gamma}}=p_T^{jet}/p_T^{\gamma})$ is a direct measure of the jet energy loss
- Gradual centrality-dependence of the x_{Jγ} distribution

Anti- k_T jet R = 0.3

Xjg spectra vs photon pT

Updated pp reference for photon-jet analysis

Photon pT > 60 GeV/c, Jet pT > 30 GeV/c

PLB 718 (2013) 773 CMS-PAS-HIN-13-006

Away size jet lose ~10% of the energy or ~ O(10 GeV) in 0-10% PbPb collisions

14% of the photons lose their away-side partner

400

Photon+jet correlation at LHC

CMS published result photon+inclusive jet

Photon $p_T > 60 \text{ GeV/c}$, Jet $p_T > 30 \text{ GeV/c}$

ATLAS preliminary photon+leading jet

60 < Photon p_T < 90 GeV/c, Jet p_T /Photon p_T > 0.4

Qualitative consistent result between ATLAS and CMS

Lose constant fraction of energy

What will happen if we take the amount of lost energy (O(10%)) from photon-jet / dijet measurement and use that to modify PYTHIA jet p_T spectra?

Lose constant amount of energy

What will happen if we take the amount of lost energy (O(10GeV)) from photon-jet / dijet measurement and use that to shift PYTHIA jet p_T spectra?

Compared to LHC data

Blue dashed line: jet $p_T \rightarrow 0.9 p_T$

Red dashed line: jet $p_T \rightarrow p_T - 15 \text{ GeV}$

Constant fractional energy loss doesn't describe the trend established by ALICE+CMS data

The resulting jet R_{AA} could be reproduced by shifting the jet spectra by -15 GeV

Jet quenching with jets

O(10 GeV) energy goes out of the jet cone

Jet quenching with jets

Inside the jet cone? O(10 GeV) energy goes out of the jet cone allallallallall medium

Yen-Jie Lee (MIT)

Jet Fragmentation at LHC

Using **Jet Energy** as a reference

CMS FF R_{AA} compared to ATLAS FF R_{CP}

$$Z = p_T^{Trk} / p_T^{Jet}$$

Qualitative consistent results between CMS and ATLAS

ATLAS update: indication of enhancement of low ξ (high z) particles in the jet cone

Photon-hadron correlation

The FF shape can not be explained by simple shift of pp fragmentation function

Enhancement of low p_⊤ particles

Consistent picture: excess of low p_T particle in the jet cone

Jet quenching with jets

Inclusive jet spectra: jet R_{AA}

Strong suppression of inclusive high p_T jets A cone of R=0.2, 0.3, 0.4 doesn't catch all the radiated energy

Do we collect the radiated energy with large cone size?

Ratio of R_{CP} with different cone sizes

Allows to recover up to 0-4% more jet energy when moving from R=0.2 \rightarrow R=0.3 in PbPb collisions than pp reference

Jet shape vs. R_{AA} ratio

Ratio of jet shapes in PbPb and pp collisions

ATLAS Jet R_{CP} (R=0.3) / R_{AA} (R=0.2) \sim 1.0 \pm 0.2 Allows to recover up to 0-4% more jet energy than pp reference

Jet shapes: how the energy is distributed as a function of R (distance between jet and track)

Jet shape vs. R_{AA} ratio

ATLAS Jet R_{CP} (R=0.3) / R_{AA} (R=0.2) \sim 1.0 \pm 0.2 Allows to recover up to 4% more jet energy than pp reference

Changing the R from 0.2 to 0.3 → recover more radiated energy

CMS observed this change in R recover ~1% more energy in PbPb than pp

CMS and ATLAS results are roughly compatible

Δ_{Recoil} Ratio

$$\Delta_{recoil} = (\frac{1}{N_{trig}} \frac{dN}{dp_{T,jet}})_{20-50} - (\frac{1}{N_{trig}} \frac{dN}{dp_{T,jet}})_{8-9}$$

Indication of recovery of the lost parton energy with larger cone size

(also consistent with no energy redistribution)

Consistent picture between CMS, ATLAS and ALICE

Caveat: jet shape depends on jet distance parameter

- Comparison between jets reconstructed with different cone size is tricky
 - At the same jet p_T: Essentially comparing a different set of jets
 - Small distance parameter + cut on jet p_T → selecting on narrow jets

Jet quenching with jets

How far does the lost energy go?

Missing p_T|| in 2010 (IC5 calojet)

The momentum difference in the dijet is balanced by low p_T particles outside the jet cone

Lost energy at RHIC and LHC

2014: Multiplicity difference vs. A_J

Multiplicity difference (in acceptance) increases as a function of A_{J} The increase is larger in PbPb

The enhancement in PbPb compared to pp increases with centrality Large A₁, 0-10% —— 15 extra particles

2014 Missing p_T

What is the multiplicity and **spectrum** of particles that balance the "extra" lost p_T ?

Calculate the missing p_T for charged particles in different p_T ranges

$$p_{\mathrm{T}}^{\parallel} = \sum_{i} -p_{\mathrm{T}}^{i} \cos\left(\phi_{i} - \phi_{\mathrm{Dijet}}\right)$$

Results - Missing p_T vs. A_J

Access to high p_T particles increases as a function of A_J

In pp —— Balanced by 2-8 GeV/c particles

In PbPb \longrightarrow Balanced by particles with $p_T < 2 \text{ GeV/c}$

Results - Missing p_T vs. ΔR

Results - Missing p_T vs. ΔR

Results - Missing p_T vs. ΔR

Lost energy at RHIC

Dijet transverse momentum balance is recovered with anti-k_T R=0.4 jet reconstruction!!

Selection on the hard fragmenting jet may bias the production vertex of the jets toward the surface of the medium

> interesting to see what we get when implementing similar bias at the LHC

Jet quenching at LHC

Summary and outlook (1/2)

What's the fraction energy radiated out of the jet cone?

From jet R_{AA} and photon-jet: ~10% of the jet energy go out of the jet cone at high p_T , O(10 GeV)

To figure out the $\Delta E(p_T)$ directly from data:

- → Important to measure triggered jet differential cross-section using different trigger objects (using ideally isolated photons for CMS+ATLAS / leading hadron in ALICE)
- → Measurements with different distance parameters
- → Measure jets from gluon, quark and heavy quark separately using W+jet, Z+jet, photon+jet and dijet events

Can we recover the lost energy by jet reconstruction with large R?

Lost energy is recovered slowly, R=0.2-0.5 doesn't recover all the lost energy

Different behavior observed (in STAR) if biased jet fragmentation selection is used

Summary and outlook (2/2)

Jet structure modified?

Excess of low p_T particles inside the jet cone.

Modified jet FF and/or jet shapes can be explained by different classes of models

Which part of it is coming from the changing q/g fraction?

How does parton energy loss depend on the fragmentation pattern?

Can we learn more using sub-jet reconstruction?

Fluctuation of jet fragmentation modification?

Where does the lost energy go?

Distribution of lost energy: Initial configuration (2/3/multi-jet) + medium effects?

Can we kill the effect by biasing the jet fragmentation?

Can we kill / enhance the effect by requiring / rejecting a third jet in the event?

What are the alternative way to select quenched jets?

Backup slides