Jets at the LHC: Where does the lost energy go? ### High p_T charged particles Suppression of high p_T particles in AA collisions ### Why do we study jet quenching with jets? Theoretically calculable, infra-red/collinear safe Allow the use of a well defined object (by algorithm) to study "the final parton energy" and how the energy is distributed with respect to the direction of http://www.digitalpicturezone.com/digital-pictures/30-colorful-examples-of-high-speed-bullet-photography/ with respect to the direction of the out-going parton Allow us to select quenched jets (i.e., jets from partons which have lost a lot of energy when passing through the medium) ### Charged particle spectra in pp Charged particle spectra in pp and PYTHIA agree within 20-60% ### Jet spectra in pp ### Where does the lost energy go? - Reconstructed jet analysis - Jet spectra / R_{AA} - Dijet / photon-jet asymmetry - Energy redistribution inside the jet cone: - Jet FF and jet shape - Energy distribution out of the jet cone - Missing p_T measurements # Charged particle and jet R_{pPb} (QM2014) Need to check jet fragmentation function Jet spectra seem to be under control # Preliminary ATLAS and CMS RAA # Preliminary ATLAS and CMS RAA ## Preliminary ATLAS and CMS RAA ### Weak dependence on jet rapidity Quark/gluon fraction (as well as the slope of the jet pT spectra) changes v.s. y ### Preliminary Jet R_{AA} at LHC ### ALICE new result 10-30% # ALICE Preliminary Pb-Pb \ $s_{NN} = 2.76 \text{ TeV}$ anti- k_T R = 0.2 $|m_{jet}| < 0.5$ $p_{T,charged}^{leading} > 5 \text{ GeV/}c$ 10 - 30% ### ATLAS new results on jet RAA R_{AA} raises as a function of jet p_T 80 90 R_{AA} v.s p_T & y 100 110 120 $p_{\text{T,iet}} \, (\text{GeV}/c)$ ALI-PREL-77644 ### Jet R_{AA} in PbPb collisions at LHC Establish a rising trend from low to high jet p_T ### Jet R_{AA} in PbPb collisions at LHC It would be nice to have low p_T CMS data / ATLAS R_{AA} with R=0.2 / ALICE high p_T data ### Jet R_{AA} in PbPb collisions at LHC ### Dijet asymmetry A_J in RHIC and LHC $$A_J = (p_{T,1} - p_{T,2})/(p_{T,1} + p_{T,2})$$ Anti-k_T R=0.2, p_{T,1}>16 GeV & p_{T,2}>8 GeV with p_T^{cut}>2 GeV/c ### Dijet energy ratio (imbalance) - Energy imbalance increases with centrality - Very high p_⊤ jets are also quenched PLB 712 (2012) 176 ### Fraction of jets with an away side jet • Given a leading jet with $p_T > 150$ GeV/c, >90% of them has an away side partner Fake away side jet rate is < 4% ### γ -"inclusive jet" correlations - Photons serve as an unmodified energy tag for the jet partner - Ratio of the p_T of jets to photons $(x_{J_{\gamma}}=p_T^{jet}/p_T^{\gamma})$ is a direct measure of the jet energy loss - Gradual centrality-dependence of the x_{Jγ} distribution Anti- k_T jet R = 0.3 # Xjg spectra vs photon pT ### Updated pp reference for photon-jet analysis Photon pT > 60 GeV/c, Jet pT > 30 GeV/c PLB 718 (2013) 773 CMS-PAS-HIN-13-006 Away size jet lose ~10% of the energy or ~ O(10 GeV) in 0-10% PbPb collisions 14% of the photons lose their away-side partner 400 ### Photon+jet correlation at LHC CMS published result photon+inclusive jet Photon $p_T > 60 \text{ GeV/c}$, Jet $p_T > 30 \text{ GeV/c}$ ATLAS preliminary photon+leading jet 60 < Photon p_T < 90 GeV/c, Jet p_T /Photon p_T > 0.4 Qualitative consistent result between ATLAS and CMS ### Lose constant fraction of energy What will happen if we take the amount of lost energy (O(10%)) from photon-jet / dijet measurement and use that to modify PYTHIA jet p_T spectra? ### Lose constant amount of energy What will happen if we take the amount of lost energy (O(10GeV)) from photon-jet / dijet measurement and use that to shift PYTHIA jet p_T spectra? ### Compared to LHC data Blue dashed line: jet $p_T \rightarrow 0.9 p_T$ Red dashed line: jet $p_T \rightarrow p_T - 15 \text{ GeV}$ Constant fractional energy loss doesn't describe the trend established by ALICE+CMS data The resulting jet R_{AA} could be reproduced by shifting the jet spectra by -15 GeV ## Jet quenching with jets O(10 GeV) energy goes out of the jet cone ### Jet quenching with jets Inside the jet cone? O(10 GeV) energy goes out of the jet cone allallallallall medium Yen-Jie Lee (MIT) ### Jet Fragmentation at LHC Using **Jet Energy** as a reference CMS FF R_{AA} compared to ATLAS FF R_{CP} $$Z = p_T^{Trk} / p_T^{Jet}$$ Qualitative consistent results between CMS and ATLAS ATLAS update: indication of enhancement of low ξ (high z) particles in the jet cone ### Photon-hadron correlation The FF shape can not be explained by simple shift of pp fragmentation function Enhancement of low p_⊤ particles ### Consistent picture: excess of low p_T particle in the jet cone ### Jet quenching with jets ### Inclusive jet spectra: jet R_{AA} Strong suppression of inclusive high p_T jets A cone of R=0.2, 0.3, 0.4 doesn't catch all the radiated energy ### Do we collect the radiated energy with large cone size? Ratio of R_{CP} with different cone sizes Allows to recover up to 0-4% more jet energy when moving from R=0.2 \rightarrow R=0.3 in PbPb collisions than pp reference ### Jet shape vs. R_{AA} ratio Ratio of jet shapes in PbPb and pp collisions ATLAS Jet R_{CP} (R=0.3) / R_{AA} (R=0.2) \sim 1.0 \pm 0.2 Allows to recover up to 0-4% more jet energy than pp reference Jet shapes: how the energy is distributed as a function of R (distance between jet and track) ### Jet shape vs. R_{AA} ratio ATLAS Jet R_{CP} (R=0.3) / R_{AA} (R=0.2) \sim 1.0 \pm 0.2 Allows to recover up to 4% more jet energy than pp reference Changing the R from 0.2 to 0.3 → recover more radiated energy CMS observed this change in R recover ~1% more energy in PbPb than pp CMS and ATLAS results are roughly compatible # Δ_{Recoil} Ratio $$\Delta_{recoil} = (\frac{1}{N_{trig}} \frac{dN}{dp_{T,jet}})_{20-50} - (\frac{1}{N_{trig}} \frac{dN}{dp_{T,jet}})_{8-9}$$ # Indication of recovery of the lost parton energy with larger cone size (also consistent with no energy redistribution) Consistent picture between CMS, ATLAS and ALICE ### Caveat: jet shape depends on jet distance parameter - Comparison between jets reconstructed with different cone size is tricky - At the same jet p_T: Essentially comparing a different set of jets - Small distance parameter + cut on jet p_T → selecting on narrow jets ### Jet quenching with jets How far does the lost energy go? # Missing p_T|| in 2010 (IC5 calojet) The momentum difference in the dijet is balanced by low p_T particles outside the jet cone #### Lost energy at RHIC and LHC ## 2014: Multiplicity difference vs. A_J Multiplicity difference (in acceptance) increases as a function of A_{J} The increase is larger in PbPb The enhancement in PbPb compared to pp increases with centrality Large A₁, 0-10% —— 15 extra particles ## 2014 Missing p_T What is the multiplicity and **spectrum** of particles that balance the "extra" lost p_T ? Calculate the missing p_T for charged particles in different p_T ranges $$p_{\mathrm{T}}^{\parallel} = \sum_{i} -p_{\mathrm{T}}^{i} \cos\left(\phi_{i} - \phi_{\mathrm{Dijet}}\right)$$ ## Results - Missing p_T vs. A_J Access to high p_T particles increases as a function of A_J In pp —— Balanced by 2-8 GeV/c particles In PbPb \longrightarrow Balanced by particles with $p_T < 2 \text{ GeV/c}$ #### Results - Missing p_T vs. ΔR #### Results - Missing p_T vs. ΔR #### Results - Missing p_T vs. ΔR #### Lost energy at RHIC Dijet transverse momentum balance is recovered with anti-k_T R=0.4 jet reconstruction!! Selection on the hard fragmenting jet may bias the production vertex of the jets toward the surface of the medium > interesting to see what we get when implementing similar bias at the LHC # Jet quenching at LHC ## Summary and outlook (1/2) What's the fraction energy radiated out of the jet cone? From jet R_{AA} and photon-jet: ~10% of the jet energy go out of the jet cone at high p_T , O(10 GeV) To figure out the $\Delta E(p_T)$ directly from data: - → Important to measure triggered jet differential cross-section using different trigger objects (using ideally isolated photons for CMS+ATLAS / leading hadron in ALICE) - → Measurements with different distance parameters - → Measure jets from gluon, quark and heavy quark separately using W+jet, Z+jet, photon+jet and dijet events Can we recover the lost energy by jet reconstruction with large R? Lost energy is recovered slowly, R=0.2-0.5 doesn't recover all the lost energy Different behavior observed (in STAR) if biased jet fragmentation selection is used ## Summary and outlook (2/2) Jet structure modified? Excess of low p_T particles inside the jet cone. Modified jet FF and/or jet shapes can be explained by different classes of models Which part of it is coming from the changing q/g fraction? How does parton energy loss depend on the fragmentation pattern? Can we learn more using sub-jet reconstruction? Fluctuation of jet fragmentation modification? Where does the lost energy go? Distribution of lost energy: Initial configuration (2/3/multi-jet) + medium effects? Can we kill the effect by biasing the jet fragmentation? Can we kill / enhance the effect by requiring / rejecting a third jet in the event? What are the alternative way to select quenched jets? #### Backup slides