

URL: http://itcofe.web.cern.ch/itcofe/Projects/LHC-GCS/welcome.html

LHC GCS
A framework for the production of 23 homogeneous control systems

G.Thomas1, K. Azarov1, R. Barillère1, S. Cabaret2, N. Kulman1, X.Pons1, J. Rochez1,
1CERN, Geneva, Switzerland, 2UPJV / LMBE-ESIEE, Amiens, France – CERN, Geneva, Switzerland.

Input file -List of Anomaly Objects

Input -PVSS template file
panel

Output file – Alice TPC Mixer Anomaly view

Recipes

Scripts

PVSS
Template panels

PVSS configuration files

Synoptics of a complete System
CSV, XML

 files

Alert Window Tree
/Trend Tree

• The synoptic view components allow the production of similar but not identi-
cal human user interfaces.

• The trend view component produces all trend views of a LHC GCS instance.
• The view trees component configures the hierarchical organization of the

synoptic and trend views of an LHC GCS instance.
• The recipe component provides tools for the configuration and operation of

recipes of an application.
• The anomaly component is a solution to build synoptic views displaying the

alarm objects which can raise the interlock of a given higher-level object of
the control application.

• The alert summary component allows the configuration of PVSS alert sum-
maries for these high level objects.

Purpose
The purpose of the SCADA components is to replace the interactive configuration
phase of the supervision layer.

A typical LHC instance such as Alice TPC (6 gas modules) contains ~20 synoptic
views, 15 Anomaly views, 3 Recipe types per module (with ~ 100 parameters per
type), 1 Window/trend tree (7 nodes), and 1 Alert summary configuration per PCO.

Principle
All components are built upon a similar principle. They consist of scripts which pro-
duce displays and/or data points in the PVSS DB from LHC GCS instance-specific in-
put files (e.g. synoptic view templates, objects description files). The input files are cre-
ated manually or can be extracted from a database.

Purpose
The UNICOS framework Object components consist of libraries to implement many
types of objects (e.g. I/O, field objects, and high level control objects). Each of the ob-
jects is evaluated in the PLCs and has a proxy in the PVSS layer.

Principle
New classes of objects have been introduced for the LHC GCS applications. They deal
with specific gas devices (e.g. Mass Flow Controllers) and with specific functionality
(e.g. xPar objects for recipes).

• MFC (Mass Flow Controller)
• Pump
• AA/DA (Analog/Digital Alarm)

Anomaly component

Window Tree component

This component is implemented by means of PVSS
scripts which read a file in XML format listing the
alarm objects and their relations with the PCOs. At
configuration time the scripts add the widgets in the
appropriate windows of the panel and adjust its size.

Recipe component

Recipes instantiated in PVSS DB

Recipe Management panels

Input file –Recipe parameters of a LHC GCS instance (Alice TPC)

The component has been implemented using PVSS standard technologies. For the automatic
instantiation of the recipe elements in PVSS, a configuration panel has been implemented to
gather the input file (file describing the recipes of a LHC GCS instance) and scripts written in
the PVSS scripting language to process the input file and create the data point elements in the
PVSS database. The input file is coded in ASCII CSV format. The file can be written manu-
ally or automatically extracted from a database.

The PVSS panels provided have been used for recipe editing. The PVSS activation panels
have been customized to deal with the xPAR download mechanism and to display feedback in-
formation. The download mechanism has been written in the PVSS script language.

The principle relies on input files describing the tree hierarchies and scripts to translate
the information of the input files and write it to the corresponding PVSS data points.
The input file can be written manually or generated from a database and contains the in-
formation about the tree structure (node and children relationships) of a given LHC
GCS instance. Then standard PVSS scripts and JCOP framework functions are used to
parse the file and create the data points in the PVSS database. The standard UNICOS
active X window is then used to display and navigate through the trees.

Input file – Alice TPC Window Tree structure

PVSS WT display

SCADA Components

Object Components

• xPar (Analog/Digital/Word Parameters)
• xS (Analog/Digital/Word Status)
• xC (Analog/Digital/Word Computed)

GCS object classes extension

Purpose
In addition to the libraries implementing the LHC GCS classes in the PLC, a compo-
nent has been developed to ease the development of the application-specific code re-
quired for the closed-loop controls, the interlock detection, etc.

Logic files Logic templates

XSLT

Logic
DB

Logic
Generator

MS Access database

PLC Components

Unity Code

 Principle
The basic principle of the PLC logic component is then to produce a set of re-usable
files, establish a relationship between these files and the field objects of a LHC GCS
instance and let a tool gather them to build the full PLC code according to the
UNICOS PLC code structure. A file contains the logic required to drive a low level ob-
ject of one of the 7 routines of a PCO.

LHC GCS instance logic code (Unity)

The component has been implemented using standard technology. The files are in XML
format embedding PLC code (e.g. the standard Structure Text PLC language) and Visual
Basic functions. The tool is based on a Microsoft Access database in which the objects of
a LHC GCS instance are associated with files. The parameters represent the properties of
the relationships.

This database can be populated manually or by high level generators. Visual Basic scripts
pre-compile the files to produced intermediate XML files. The test conditions and queries
are evaluated during this phase. Finally the files produced are combined into a single
XML file using the XSLT transform which is then imported in the PLC development en-
vironment.

Object-include file relationships

An include file typically contains variables to handle object names; it can then be used for sev-
eral gas systems. For instance when a device is fitted for a given purpose (e.g. the pump bypass
valve), in these gas systems, it is driven according to the same principle. When a unique file
can not be used, one can produce several files and associate them appropriately with the ob-
jects.

Objects

DB

MS Access database

Object type
templates

Instance
Generator XSLT

PLC Objects instance

PVSS

PVSS Objects instance

Unity Code

PVSS
Objects DB

These proxies are represented by means of icons (widgets) and operated by means of dedicated
displays (faceplates); they have been developed for each class of objects. A communication layer
implements the exchange of object status and commands between PLCs and PVSS. In order to
have consistent PLC and PVSS layers, they are generated from a unique database using a data-
driven tool, the UNICOS Instance Generator.

Object class in PLC and PVSS Instance Generator template files

In addition template files and libraries have been developed for each object class to
enable their automatic generation by the Instance Generator and the PVSS scripts.

MassFlowController; ObjectNumber; Alias; Description; Diagnostic; Html; DefaultPanel; Domain; Nature;
Widget; setpointUnit; setPointFormat; setpointRangeMax; setpointRangeMin; FlowUnit; FlowFormat; VolumeUnit;
VolumeFormat; Deadband; DeadbandType; ArchiveActive; ArchiveTimeFilter; NormalPosition; StsReg01; evSts-
Reg01; ApSpSt; AuSpRSt; SpOVSt; DrMoSt; AuDrMoRSt; DrMoOVSt; CCSt; AuCCRSt; CCOVSt; MaxFlSt;

PLC -MFC DFB PVSS -MFC DPT

PVSS -MFC Widget

PVSS -MFC Faceplate

Logic Objects database

Logic template file (include file)

PVSS –MFC CSV Format

MassFlowController;{21000 + $Record Number$};$Equipment$_$Location$_$Name$;$Description$;$Diagnostics$;
$Html Info$;$Synoptic$;$Domain$;$Nature$;$Instance Type$;$Setpoint Unit$;$Setpoint Format$;$Setpoint Range
Max$;$Setpoint Range Min$;$Flow Unit$;$Flow Format$;{IIF($SetPoint Flow Archive Active$,"Y;$SetPoint Flow Ar-
chive Sampling$","N;0")};$Volume Unit$;$Volume Format$;{IIF($Volume Archive Active$,"Y;$Volume Archive Sam-
pling$","N;0")};$Dead Band Value Scada$;$Dead Band Type Scada$;$Normal Pos$;$StsReg01$;$evStsReg01$;

Instance Generator –MFC PVSS template

{Info(""MFC"")}
(* $Description$ *)(* A PLC init does always reset all structures, therefore we must initialize it again *)
{IIF (""$Process Input ParReg$"" = """", ' (* ParReg set by logic*)', '$Equipment$_$Location$_$Name$_PMfc.PArReg :=
$Process Input ParReg$;')}{IIF (""$Process Input PAlTiDe$"" = """",' (* PalTiDe set by
logic*)','$Equipment$_$Location$_$Name$_PMfc.PAlTiDe := t#$Process Input PAlTiDe$s;')}
{IIF (""$Process Input PMInSpd$"" = """",' (* PMinSpd set by logic*)',
'$Equipment$_$Location$_$Name$_PMfc.PMinSpd := $Process Input PMInSpd$;')}

Instance Generator –MFC Unity template

Architecture
The core of the LHC GCS framework is the Object components which are based on a common
UNICOS tool (Instance Generator) to which LHC GCS types have been added. These types have been
designed according to the UNICOS patterns.

The LHC GCS framework SCADA components ease the development of PVSS features such as syn-
optic and trend views, trees of views, etc. They depend on the Object components. They consist of in-
puts files which describe in detail the pieces of information to handle and scripts which create the
PVSS displays and data points from these files. The input files can be produced manually (with text or
XML editors) or can be extracted automatically from databases.

The LHC GCS framework PLC specific components are based on the UNICOS tool (Logic Genera-
tor), they help in the production of the application-specific PLC code (e.g. closed loop controls, inter-
lock handling, etc.). They consist of generic source files which are pre-compiled for the PLCs.

Conclusion
A first version of the LHC GCS framework implementing all necessary functionality has been re-
leased. This version has been used to produce the first of the 23 LHC GCS instances. The LHC GCS
framework allows time saving in the generation process of a control application. In addition it guaran-
tees homogeneity of the code produced for all LHC GCS instances. By replacing a lot of interactive
configuration phases, it reduces the number of configuration errors. Although they are used in combi-
nation with a model-driven approach for the LCH GCS project, most of the framework components
can be re-used in other UNICOS-based control projects.

Problem Statement
The LHC experiments’ Gas Control System (LHC GCS) aims to provide the LHC experiments with
homogeneous control systems (supervision and process control layers) for their 23 gas systems. To
ease the production of these control systems, it has been decided to develop a library of components,
the LHC GCS framework, and to adopt a model-driven automatic code generation approach.

The LHC GCS instances are turn-key control applications which provide end-users with a consistent
look and feel. As they must be developed and maintained with a small team, it has been decided to first
produce libraries and tools, the LHC GCS framework, and then to develop all instances from this
framework.

Strategy
The strategy consisted of selecting industrial tools and technologies for the implementation of all lay-
ers of the LHC GCS instances: A Supervision Control And Data Acquisition (SCADA) system for the
supervision layer (ETM’s PVSSII), Schneider Programmable Logic Controllers (PLC) for the process
control, standard protocols for the middleware and field buses for the access to the devices.

UNICOS , a framework to develop industrial applications, has been identified as a tool offering solu-
tions to most of the LHC GCS requirements.

Objects
DB

MS Access database

Synoptic views catalog

Object type
templates

META-MODEL

SCADA components

Object components

Logic files

Logic templates

XSLT

PLC components

Logic
DB

Logic
Generator

Instance
Generator

MS Access database

Component input files

Scripts

Objects
data points

UNICOS FW

Synoptic views,
Trees, Recipes, etc.

UNICOS baseline

UNICOS Middleware

Object
DFB instances

Logic control

PLC

PVSS

LHC GCS instanceLHC GCS framework

Scripts

XSLT

PLC objects instance

PVSS objects instance

