

Hardware Abstraction in Analogue

ABSTRACT

OASIS, the Open Analogue Signal Information System, is based on a three-tier architecture. The front-end tier, the lowest part, controls the hardware and provides a uniform interface to the
application server in the middle tier. However, we do not want to restrict the functionalities provided to the user to the level of the hardware with the fewest capabilities. To achieve these
contradictory goals, the front-end tier model is made of several classes with relationships between them. Each class represents an element of the model e.g. an oscilloscope or an oscilloscope
channel. The relationships allow us to navigate in the model e.g. to go from a channel to its enclosing oscilloscope. The model lets most of these elements be optional to account for the
heterogeneity of the different installations. The class interfaces are made of properties where a property can be seen as a parameter of the controlled hardware. Each property has a standard
structure that provides not only the current value of the parameter but also how it can vary. This way, the system is able to support high-end hardware with a lot of possibilities but also
cheaper or older hardware with fewer capabilities.

Today, there are three implementations of the front-end model under development. The first two are oscilloscopes and analogue matrices in CompactPCI and VXI formats. The last one is the
diagnostics part of the LEIR RF beam control - a completely digital component - showing that the model is flexible enough to support very different hardware.

OASIS IN BRIEF

 OASIS is a system for the acquisition and display of analogue signals in the accelerator domain. The signals, distributed all around
the accelerators, are digitalised by oscilloscopes lodged in front-end computers (FEC). The acquired data is sent through the Ethernet
network and displayed on a workstation running a specific application, the OASIS viewer. When the bandwidth requirement allows it,
the analogue signals are multiplexed by analogue matrices which are connected to the oscilloscope channels. This scheme takes into
account the fact that not all the available signals are observed at the same time and allows us to save some digitisers, the most
expensive devices in the system. The FECs are installed next to the signal sources in order to preserve the signal integrity as much as
possible.

 OASIS is based on a three-tier architecture ([1] and [2]). The front-end tier, the lowest one, has the responsibility to handle the
hardware, the digitizer and the multiplexer modules. It provides a hardware independent interface to the upper tiers.

FRONT-END INTERFACE STRUCTURE

 The front-end interface is composed of several classes. Each class can be related to the others in some predefined ways using relationships. The interface can be split in two parts, the signal
part which is concerned with the analogue signals and their acquisitions and the trigger part which focuses on the oscilloscope triggering.

FRONT-END INTERFACE—SIGNAL PART

ª Signal class: it represents the analogue signals we want to observe.

ª Channel class: here, we find all the settings that are channel dependent such as the sensibility or the DC offset. It
contains also the acquired waveforms.

ª Scope class: it controls the global settings - those which affect all the channels in a scope - such as time span or trigger
delay time. A scope can have one or several channels and its settings have the priority on those belonging to the
enclosed channels

ª Mux class: the Mux controls the multiplexing matrices that can be installed in front of the oscilloscope channels. The
Mux class is optional.

FRONT-END INTERFACE—TRIGGER PART

ª TriggerSignal class: it represents the trigger pulses we want to acquire the analogue signals with.

ª The Mux class has the same role as the one used in the signal part except that it multiplexes trigger pulses instead of analogue
signals.

ª The Counter class controls the counters that may be installed at the multiplexer output. These counters are used to delay the trigger
pulses using an external clock.
 In this part of the interface, only the TriggerSignal and the Scope Class are mandatory.

IMPLEMENTATION & PROPERTY STRUCTURE

 The implementation of the front-end interface is based on the Front-End Software Architecture (FESA)[5]
framework. For the links between instances, we use the device relationship database and the directory service [6]. The
communication with the OASIS application server is based on the Control MiddleWare (CMW) [7].
 Today, we have at least one implementation for all the classes. Implementing the Scope and Channel classes, we
have FESA classes for the control of Acqiris CompactPCI oscilloscopes [3](the DC series) and HP VXI oscilloscopes[4]. The
Mux class is implemented by the class controlling Pickering CompactPCI multiplexers [8] and other CERN made
modules.

 In the Front-end interface, all the properties that represent a setting
(e.g. Timebase, Sensibility...) are of the type Setting, either
ContinuousSetting or DiscreteSetting. This Setting hierarchy allows the
OASIS application server to query the capabilities of the underlying hardware in a uniform way and, therefore, to use the module features to their
maximum.
 However, these classes cannot be used as such in the FESA framework. First, because FESA supports only primitive types and, second, because
the CMW is data oriented. To solve this problem, we define a mapping between the ContinuousSetting and DiscreteSetting classes and two data
structures that we use in FESA class designs each time we need to implement a property returning the Setting type.

REFERENCE

[1] S. Deghaye et al., “OASIS: a new system to acquire and display the analogue signals for LHC”, ICALEPCS’03, Gyeongiu,
 Korea, October 2003.
[2] S. Deghaye et al., “OASIS: Status report”, these proceedings.
[3] http://www.acqiris.com/products/digitizers/8-bit-cpci-6u-digitizers
[4] http://www.agilent.com
[5] A. Guerrero et al., “CERN Front-End Software Architecture for accelerator controls”, ICALEPCS’03, Gyeongiu, Korea,
 October 2003.
[6] J. Cuperus et al., “The Directory Service for the CERN accelerator control application programs”, these proceedings.
[7] K. Kostro et al., “Controls Middleware (CMW): Status and use”, ICALEPCS’03, Gyeongiu, Korea, October 2003.
[8] http://www.pickeringswitch.com/dynamic/main.cgi?myaction=showprod;ref=2361

S. Deghaye, L. Bojtar, Y. Georgievskiy, J. Serrano.

CERN, Geneva, Switzerland.

The relationships between
- Signal and Mux
- Mux and Channel
have an associated attribute,
input number.

Scope

Signal
Channel

Mux

{XOR}

The signal is connected
either to the mux and the
mux to the scope channel
or directly to the scope
channel.

1

1..*1..*1..*

1

0..* 0..10..* 0..1

0..*0..*

1..*1..*

0..1

1..*

0..1

The relationships between
- TriggerSignal and Mux;
- Clock and Counter;
have an associated attribute,
input number.

The external trigger
comes either directly,
from the mux or from the
mux going through a
counter.

Clock

Scope

TriggerSignal

Counter

Mux
{XOR}

1..*

0..*

0..* 0..10..* 0..1

1..*

1..*

1..*

1..*

1
0..1

1
0..1

0..*

0..10..* 0..1
0..*0..*

1..*

1

0..*

1

OASIS
Application Server

Java API for Parameter Control

Controls MiddleWare (CMW)
Front-End Software Architecture

Device drivers

Hardware CompactPCI,

OASIS
Front-

Towards client ap-

IDC

ContinuousSetting
- valueMin : T
- valueMax : T

DiscreteSetting
- valueRange : T[]

ContinuousProperty_DataType
- value : T
- min : T
- max : T
- discrete : bool = false

<<Structure>>

Setting
- value : T

DiscreteProperty_DataType
- value : T
- range : T[]
- discrete : bool = true

<<Structure>>

