
The CERN Large Hadron Collider (LHC) requires constant monitoring and control of quantities of parameters to guarantee operational conditions. For this purpose, a methodology called UNICOS (UNIfied Industrial COntrols Systems)
has been implemented to standardize the design of process control applications. To further accelerate the development of these applications, we migrated our existing UNICOS tooling suite toward a software factory in charge of
assembling project, domain and technical information seamlessly into deployable PLC (Programmable logic Controller) – SCADA (Supervisory Control And Data Acquisition) systems.
This software factory delivers consistently high quality by reducing human errors and repetitive tasks, and adapts to user specifications in a cost-efficient way. Hence, this production tool is designed to encapsulate and hide the PLC
and SCADA target platforms, enabling the experts to focus on the business model rather than specific syntaxes and grammars. Based on industry standard software, this production tool together with the UNICOS methodology provide a
modular environment meant to support process control experts to develop their solutions quickly.

REFERENCES:
[1] Philippe Gayet and Renaud Barillere, “UNICOS A framework to

build Industry like control systems: Principles and methodology”,
CERN, Geneva, Switzerland.

[2] Jack Greenfield and Keith Short, “Moving to Software Factories”,
Microsoft© Corporation.

[3] G. Thomas, “LHC GCS: A model-driven approach for automatic
PLC and SCADA code generation”, CERN, Geneva, Switzerland.

[4] The GlassFish community,
http://java.sun.com/javaee/community/glassfish/

[5] Joseph Fialli and Sekhar Vajjhala, Sun Microsystems© Inc. “The
Java™ Architecture for XML Binding (JAXB)”, January 8th 2003.

[6] The Jython Project, http://www.jython.org.

PLC/SCADA
developer

Domain
expert

System
developer

UAB Core
Technical

configuration

Plug-in
Technical

configuration.

Grammar
check

Project data

Domain
knowledge

‘A’ Platform–
specific

generated code

UAB Core

Plug -
in ‘A’ ‘B’ ‘C’

1

2

3
Plug -in

developer

Just like the
orchestra
conductor, the
Code generation
rules don’t contain
any data, but
simply encapsulate
the business
knowledge of the
output expected.

Their primary goal
is to drive the code
generation through
a set of abstract
services offered by
the code generation
plug-ins.

The Raw project data consists of a simple monolithic
XML file validated by the Grammar check XML
schemas. The information gathered here is to be
used directly or interpreted by the Code generation
rules and the UAB Plug-ins. One could identify 3
distinct categories of information described here:
•Documentation: This information is simply present to
document other contained information, to help
understanding the purpose of the information
provided.
•Meta data: This information characterizes other
pieces of data contained in the XML file for proper
processing during the code generation process.
•Technical: Finally the low level technical information
such as process control object characteristics.

The Grammar check packet consists of one or several XML Schema files
designed to be easy to extend and to maintain. These XML Schemas have
the following responsibilities:
•They define the XML properties which describe every piece of information of
the Raw project data XML file(s).
•They used to validate the XML input, to prevent errors in the typing of the
Raw project data.
•They are target-platform and project independent, meaning they can be
reused and shared.

The chosen technology for every
input data to the UAB Core and
recommended for the code
generation plug-ins is XML,
validated by XML Schemas.

Java is programming language for
the UAB Core and the plug-ins
development to rely on free,
industry-standard and vendor –
independent technologies to develop
the UAB Tool.

JAXB (the Java Architecture for XML
Binding) is the chosen technology to
access the XML information.
JAXB is a SUN©-supported open
initiative to provide both automatic
XML-to-Java binding and XML
mangling/de-mangling. It was
selected by the UAB Tool mainly
because it allows runtime XML
Schema modification and
adaptation.

Finally the Jython scripting language
(Python for Java) provides power
and simplicity to the Code
generation rules.

SOFTWARE FACTORY TECHNIQUES APPLIED TO
PROCESS CONTROL AT CERN

Mathias Dutour (Mathias.Philippe.Dutour@cern.ch) CERN Information Technology / Controls, Geneva, Switzerland

…ok, no problem.
To meet the user needs, the UAB (UNICOS Application Builder) is implementing the following mechanisms:
• Platform-independent models and data structures
• More power to the users to drive the code generation process through domain knowledge scripting.
• Automatic adaptation to user inputs structural modifications.
• Automatic grammar and syntax checking + support for semantic consistency verification.
• Technical, domain and project specific knowledge are handled and defined separately.
• Target platform abstraction through high level PLC/SCADA code generation services.

• Assets reusability across teams and projects.
• Enhanced control over code generation.
• Robustness toward input structural changes.
• More user support for troubleshooting.
• Distinguish domain from technical knowledge.
• Support of multiple platforms at once.

(1) Extract
information

(2) Call generation
directives

(3) Generates
code

Code generation rules

Project data

Generated PLC code

The XML input and Jython rules are
valid

Run the main
program

Select the plugins to use
for the generation

Configure se lected plugins

Select XML
input file(s)

Select Jython
templates

Select XML
input file(s)

Select Jython
templates

Customize the technical
plugins configuration

This activity is
optionnal.

Request
generation

The UAB will trigger the code
generation plugins the one after the
others, us ing the User -provided XML
 input files and Jython code
generation rules.

Instanciate and connect
the Managers

Plugin Manager, Template
Manager, GUI, ...

Discover the
avai lable plugins

Validate and connect the plugins to
their inputs (XML and Jython)

Processes requested
generation actions

Generate User
report

The generated output is available

Dump output
file(s)

Connects the Jython templates to
the plugins and load the XML
content in memory.

Activity Diagram: Processes
requested generation action...

UABUser

The Jython templates and XML
input is set and valid

Initilize access to XML
project input

Call in a sequence the Initiali ze,
Check and Begin methods

Generate related
code in memory

Call ProcessInstance method

Call in a sequence the End
and Shutdown methods

For convinience to the User, the current Instance is
provided to the Jython ProcessInstance method.

The code has been generated in
memory.

Perform unique actions

Call Plugin
generation services

Retrieve required data
from XML input

Call Plugin
generation services

Retrieve required data
from XML input

There is one Jython code
generation rule per UNICOS Object
type.

Often us e XML input data
for this purpose.

ProcessInstance

Retrieve required data
from XML input

Call Plugin
generation services

Retrieve required data
from XML input

Call Plugin
generation services

Other UNICOS Object
instance ?

Yes

No

Perform unique actions

Call Plugin generation
services

Retrieve required data
from XML input

Call Plugin generation
services

Retrieve required data
from XML input

This activity is performed for each UNICOS
Object instance.

This activity is performed
only once in the Initialize,
Check and Begin
methods.

This activity is performed only
once in the End and
Shutdown methods.

Jython code generation cla ssJav a code generation plugin

SUMMARY
The software factory approach, implemented here in the context of process control, allows focusing on the expected result rather than on the means to produce

this result. Mixing static configuration, auto-adaptive software and abstract user directives, the UAB tool is a powerful and yet simple rule–driven code generation
environment. The project technical data, business logic and tooling configuration are clearly de-correlated preventing the spaghetti plate effect: The long term
maintenance of the process control applications is made safer and cheaper.
The multi-level error checking mechanisms addressing grammar, syntax and semantic aspects filter-out many mistakes which could be difficult to detect before
deployment and therefore very costly to track down and fix.
Nonetheless, this approach is not self sufficient and does enforce on the forehand a rigorous design of the project constructions to be used, such as the Grammar
check and Code generation rules packets. This is also to the direct benefit of the quality of the process control application produced.
Finally the UAB tool is not limited to UNICOS or even code generation, and its architecture can adapt to many domains with a need for a flexible offline data
processing solution.

A concrete example
(partial) of an XML
Schema used for
PLC/SCADA Objects
code generation..

The UAB Core packet contains the central tool
management mechanics.
It has a pure technical role and has no interest or
knowledge in Raw project data, Code generation
rules and targeted platforms, it acts simply as a
transparent information broker.

One could summarize its responsibilities as
follows:
•It discovers dynamically the various Plug-ins and
assert their validity;
•It loads the Raw project data information as an
internal representation (Multiple XML inputs is
allowed per Plug-in);
•It provides the Plug-ins with their respective
UNICOS Project data information and Code
generation rules.
•It provides common services required by most of
the plug-ins (E.g.: User report, file I/O,…).

“Plug-ins act just
as code weavers.”

‘A’ ‘B’ ‘C’

Each Plug-in is only in charge of the formatting
of the generated output code and repetitive
tasks.

According their purpose
and usage, they offer
several platform-
independent code
generation services as
illustrated below. A plug-in
neither has the direct
knowledge of Raw project
data nor contains hard-
coded information.

Finally the information to
tune their behavior is
described in their
respective Plug-in
technical configuration.

Automatic? Sure, but…
The automatic code generation process aims indeed at more
productivity, improved time to market and increased final product
quality. However, the maintenance of the code generation
process shall not become a nightmare due to changing user
requirements and extensions to the process control application at
end. Based on this observation, we identified the following needs
to be addressed:

