
PDVPDV a PVSS Data Viewer Application–
Dirk Hoffmann , Olivier Pisano – Centre de Physique des Particules de Marseille, case 902, 163 avenue de Luminy, F- 13288 Marseille CEDEX 09

The PVSS Data Viewer (PDV) has been developed to access environment and control data of the
Pixel detector of the ATLAS experiment, with an effort to be sufficiently generic to provide
access to data of other subdetectors and even data of other experiments or PVSS systems in
general. Other important keys for the design were independence from any existing PVSS
installation and universality regarding operation systems or user environments.

Design Criteria
● GenericPVSS/PvssDb interface

no detector or experiment specific features

● Universal (Java VM)
No OS, environment or policy dependency
WWW- able (Java Network Launch Protocol, JNLP)
No dependency on PVSS installation

● Decompression and clever display

● Basic analysis functions

● „All possible“ save- as options

Technical Implementation
A data flow diagram embedding the URL for the software design is shown below. The user
interacts with the application mainly through the DPE name selector dialog and the dialog part of
the currently selected display chart, which selects the time interval (period) of data that are being
queried.

The interna of the data storage and caching of DPEs for schemas which have already been used
in a previous session, are completely hidden from the user. A typical screenshot from a user
session is shown here. The user selects the data period for which data are going to be queried
(window Display 1). DPE definitions can vary with time and are taken into account in a way that
is transparent for the user.

The DPE Selector window shows the schema and DPE structure in tree form. The relatively
long DPE names are cut intelligently in order to arrange them in the tree. The DPE name display
can be changed at any time (for display and selector) from DPE names to the PVSS alias
convention.

Screenshot of a typical user session on Mac OS X

Context and Origin of Data
The ATLAS experiment uses PVSS, an industrial SCADA application, for its detector
control system (DCS). A custom driver establishes a connection to a central Oracle instance
for the purpose of archiving the recorded data in the PVSS Database (PvssDb).

The ATLAS DCS consists of 14 different subsystems, associated roughly to subdetectors,
which contain a total of some hundred computing nodes in form of Windows and Linux PCs.
The PvssDb of the Oracle instance is presently filled by 11 out these subsystems with an
allowed average rate of 3 GB per day, which translate into 5·106 values. This average daily
data volume of 30 GB needs to be handled efficiently by any application that implements
user queries.
As opposed to physics data which undergo a systematic reconstruction process, DCS data are
typically queried on demand, whenever an untypical event has happened or is suspected to
have happened.

PIX SCT TRT IDE LAR TIL MDT RPC TGC CSC CIC EXT TDQ DCS
Atlas experiment and names (abbreviations) of the PVSS subdetector schemas

PVSS Data Compress ion
PVSS applies a data compression algorithm called smoothing prior to writing online data into
PvssDb:
● New data that have not changed by an amount greater than a predefined deadband are

ignored.
● New data which are received from the front-end after expiry of a predefined timeout

interval are written, whether the deadband is exceeded or not. Thus the credibility of stable
data measurements is maintained at a sufficient level of confidence.

This algorithm is applied for all data values (data point elements, DPEs) independently. As the
front-end data are in general not synchronous, this leads to a continous data flow into the
PvssDb.

Data Reconstruction (and recompression)
As the PDV software aims at a completely transparent generation of displayed and extracted
data for the user, a reconstruction of the compressed raw data in the PvssDb in performed at
query time on SQL level, and inside PDV in order to fill all time slices that would be left
empty due to compression of relatively stable DPE values.

Some effort has been made to optimize long-term queries (days or weeks, even months, if DB
load restrictions allow). The actual resolution of the user display is used in order to determine
the maximum useful resolution: The user will not be able to distinguish different values that
are displayed in the same pixel interval of the abscissa. Therefore the query is optimized at
SQL level to calculate a minimum and maximum per pixel time interval equivalent. Thus data
transfer and reconstruction effort are optimized inside the Oracle instance.

Universality and Compatibility
In order to allow access to PVSS data to users outside of the ATLAS DCS cluster and
even without PVSS installation at all, the choice for the machine independent, byte code
generating language JAVA has been made. Development is made in JDK 1.5, and
applications have also been tested to run in JRE 1.6 on Linux (SL/SLC), Windows (2k,
2003, XP, Vista) and Mac OS X.

Application Features 1: Invalid data

➢ Invalid data tagged by PVSS through a 32 bit mask

➢ Filtering of invalid data by PDV, fully customizable bit mask
Display without filtering of invalid values:

Invalid bitmask selection dialog

Same display with filter bitmask of invalid values applied:

Application Features 2: DPE search

➢ Selection of DPEs in DPE Tree

➢ Search of DPEs with regular expression patterns on

● DPE names
● DPE aliases
● DPE comments

Snapshot of Search tab in the DPE Selector window

Application Features 3: History
Users typically verify same groups of DPEs routinely or, more generally, want to re-make
a display query that they have executed formerly. The PDV retains the last effected
queries for each user in the user specific PDV database (situated in the „home“ directory).

A screenshot of the corresponding History menu is shown above, which also illustrates
an additional feature of this history mechanism: All queries are stored in form of
<History><Record>s in an XML file. Thus users can, after acquiring some basic
knowledge of the underlying XML structure, edit history files with a standard XML
editor or just any text editor, or generate a history XML automatically.
PDV enables the user to select any of the history records to be displayed (thus re-queried)
at startup, which allows to use PDV for some pre-programmed data plots semi-
automatically without initial user intervention. The menu above makes use of individual
identifiers (Temperatures, Dew points, …) for easy retreival of aditionally generated
history records; otherwise the data period is used for identification.

Application Features 4: Export and Save Data
The possibility of exporting displayed data after a query has been explored exhaustively
and is probably the most complete feature of the PDV in its present state. Besides the
standard graphical export,

● as printout (or PostScript as print-to-file) or
● as PNG bitmap graphics file,

the user can export the underlying data of a display as comma separated value (CSV)

Depending on his level of understanding or needs, he has the choice between multiple
options, like

● raw data format (uncompressed from PvssDb, no reconstruction)
● reconstructed format (min/max per time slice)
● optimized reconstructed format where duplicate lines (stable values) are eliminated.

An interface to root is foreseen, but difficult to implement due to the requirement of
machine independency, which excludes JNI interfaces by principle.

Application Features 5: Plugins

➢ Accomodate subdetector/user specific requests

● Selection of DPEs by specific algorithm
or interface (possibly graphical)

● DPE name/alias splitting for tree construction

● Data Export in user specific formats

➢ User provided code, stored in jar or class file in user directory

Software management
The source code of the PDV application has been successfully managed with CVS as
repository and Savannah for user feedback, bug tracking and task management.

Outlook
After the first year of development of the PDV application, many additional requests in
addition to the basic functions have been made by the user community.
Some subdetector specific requirements have come up with the extension of its use
beyond the border of only the Pixel detector. And we expect further small functions to
be needed, if users outside the ATLAS detector start to use the application.

The essential part of all requests is programmed for implementation until the LHC
start. The product is supposed to go into maintenance phase then.
The plugin mechanism will allow users to contribute their own specific interfaces and
to exchange them among others.

The relatively low level access of the PvssDb tables in Oracle is to be replaced by a
common API provided by CERN IT-CO. Our experience gained with the interface to
the Oracle instance and the PvssDb tables is presently leaving its mark on this central
development as well.

Dirk.Hoffmann@CERN.Ch, April 2008

p

p
ATLAS experiment

The PDV application links user and database: The user interacts through the Display and DPE Selector components of the application with the PvssDb.

PvssDb

Display

	PDV – a PVSS Data Viewer Application
	Dirk Hoffmann, Olivier Pisano – Centre de Physique des Particules de Marseille, case 902, 163 avenue de Luminy, F-13288 Marseille CEDEX 09
	Design Criteria
	GenericPVSS/PvssDb interface
	no detector or experiment specific features
	Universal (Java VM)
	No OS, environment or policy dependency
	WWW-able (Java Network Launch Protocol, JNLP)
	No dependency on PVSS installation
	Decompression and clever display
	Basic analysis functions
	„All possible“ save-as options

	Technical Implementation
	Context and Origin of Data
	PVSS Data Compression
	Data Reconstruction (and recompression)
	Universality and Compatibility
	Application Features 1: Invalid data
	Invalid data tagged by PVSS through a 32 bit mask
	Filtering of invalid data by PDV, fully customizable bit mask

	Application Features 2: DPE search
	Selection of DPEs in DPE Tree
	Search of DPEs with regular expression patterns on
	DPE names
	DPE aliases
	DPE comments

	Application Features 3: History
	Application Features 4: Export and Save Data
	Application Features 5: Plugins
	Accomodate subdetector/user specific requests
	Selection of DPEs by specific algorithm
or interface (possibly graphical)
	DPE name/alias splitting for tree construction
	Data Export in user specific formats
	User provided code, stored in jar or class file in user directory

	Software management
	Outlook

