

Status of the design of triplet BPMs

Thibaut Lefevre on the behalf of the BI group HL-LHC WP2– 23rd May 2014

Outline

- Status of the current LHC triplet BPMs
 - Current performance and known limitations
 - Post LS1 operation...
- Design for HL-LHC
 - Specifications and constraints
 - Pick-up design
- Future plans, milestones & conclusions

LHC triplet BPMs (1)

LHC triplet BPMs (3)

- Performance and Known Limitation
 - Limited number of BPMs : no redundancy...
 - Limited Accuracy: BPMSW @Q1 very difficult to align properly: large uncertainty of the alignment procedure: not better than 1mm
 - Stability issue due to Tp dependence in the acquisition system
 - Limited directivity of the present strip-line design: worse than 20dB full bandwidth
 - Cross-talk between the two beams
 - Error depends of the bunch intensity and position
 - Resolution of the order of 100um in B/B and better than 10um in Orbit mode
 - Linked to the current electronic design

Post LS1 (1)

Improving the cross-talk between two beams

- Using the Synchronous orbit mode which only measures non colliding bunches:
 Tested on one BPM in 2012 Need to be deployed possibly on all BPMs
- New high resolution electronic (<100nm), DOROS, being installed in parallel to
 WBTN on Q1: option for gating on specific bunch

HL-LHC constrains

- Inermet shielding for absorbing collision debris
 - Need to rotate BPM by 45 degrees & insert shielding on mid-planes
 - Add weight, design complexity (transition from beam screen to BPM) and probably quite costly
 - Add. heat deposition that need to be estimated
- Cryo BPM: Cold to warm implies using sliding contact for strip-line
- Larger aperture
 - less signal & lower final resolution
- Heat deposition from pick-up (<100mW)
 - The static heat load for the BPM cables was estimated in 2003 to be 58 mW per cable for a 1.25m cable going from the cold BPM at 25K to the cryostat flange. (for a 0.141" Outer jacket°)
 - The dynamic heat load added by BPM signal was estimated to 32mW/cable for Ultimate bunch intensities

HL-LHC BI proposal

Proposed BPM Layout

- 7 monitors for better tuning and redundancy
- Rotated by 45 degrees with Inermet shielding

BPMs located in the interconnects – Integration and alignment to be worked out carefully

HL-LHC Strip-line design (1)

Design with standard 120mm electrode shape fitted into a 148.8mm pipe and Added Tungsten-Inermet absorbers

- CST PS Wakefield simulations with and without Tungsten-Inermet (Electric conductivity 1.2e7 S/m), 16mm thick absorbers, small bunch (beam_sigma 50mm)
- Simulated with different pipe dimensions
- Decrease in voltage signal level (pipe diam.148mm -30%, pipe diam. 100mm -35%)
- As both Vu and Vd levels are decreasing, change in directivity is small.

HL-LHC Strip-line design (2)

- Decrease in voltage signal level (pipe diam.148mm -30%, pipe diam. 100mm -35%)
 - Anyway voltage levels too high for existing pick-up electronic: We have attenuators before the electronic
- As both Vu and Vd levels are decreasing, change in directivity is small.

HL-LHC Strip-line design (3)

'Old' BPMSW

Directivity: 20dB full bandwidth

HL-LHC Strip-line design (4)

Maintaining the high degree of directivity requires that:

- The velocity of the beam and the signal be matched fairly well. For highly relativistic beams this requires a minimum amount of dielectric material in the vicinity of the stripline
- A matching of the stripline impedance to the transmission line or termination impedance at both ends. i.e. impedance mismatch of 10% will reflect 25% of the power to the wrong port. This would limit the directivity (theoretically) to 26 dB
- Minimization of the coupling between the striplines. If the interelectrode capacitance per unit length is too high, then one stripline can induce signals in the other

HL-LHC Strip-line design (5)

- Currently trying different approaches:
 - Redesign transitions (smoother, conical)

Redesign electrode shape (i.e;cylindrical, exponential stripline)

 Change shape of the pipe by adding sub-cavities (the idea is to make smooth transition between the connector and the electrode by aligning them on the zaxis)

HL-LHC Strip-line design (6)

Directivity: 23.5dB

HL-LHC BPM Layout

Impedance and number of BPMs

- BPM@Q1 bad for impedance but may be crucial for beam tuning
- Preferably sacrifying BPMs at non-optimized position where two beams overlaps
- Keep redundancy for cold BPMs

Plans and Milestones

- Pick-up design: RF optimization completed by mid 2015
- Pick electronic: Comparison between DOROS and WBTN: End of 2015
- Pick-up Mechanical design by end 2015 prototype design
- Electronic development: possibly other system using fast sampling mid 2016
- Mechanical integartion in the Cryostat end 2016
- Prototype production (Beam test) by End 2016 (2017)
- Launch production in 2018

Conclusions

- Improved Pick-up design started
 - Aiming for higher directivity
- Electronic performance in terms of resolution to be assessed on LHC after LS1
- Converge on Engineering specifications by 2016-17 (both pick-up and electronic)
- Impedance/number of BPMs to be agreed

LHC triplet BPMs (2)

BPM Aperture & Length

- Aperture
 - NOT related to length
 - Can adapt the same BPM for any aperture
 - Larger aperture ⇒ less signal & lower final resolution

Beam pipe diameter (mm)
Aperture (mm)
Electrode length (mm)

BPMSW/S	BPMSX
68.8	88.8
61	81
120	120

BPMD/	BPMSE
138.8	

131	
120	

TESLA DESY stripline BPM example

W.Radloff, M.Wendt, "Beam Monitors for the S-Band Test Facility"

C.Magne, M.Wendt "Beam position monitors for the TESLA accelerator complex" (2000)

