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Talk overview

A summary of the DAQ and software trigger plans
for the experiments in HL-LHC (n.b. LHCb/ALICE
upgrades coming in Run3)

1) Overview of DAQ architectures

2) Common assumptions and technologies

3) Software reconstruction in the HL-LHC era

4) Software triggers and real-time data analysis

As Wesley already said, a big thank you to all the working
group members whose slides/results I have stolen!



What is a “software trigger’?

=> A trigger implemented in “COTS” commodity

processors, generally CPUs but possibly with
GPU/FPGA or other “coprocessors” to help

=> Generally taken to mean a trigger which can
perform something close to a “full event
reconstruction” even if it doesn’t in practice.

Another way to say this : anything which is not
fixed-latency custom electronics. Important to
realize though that in the multi-core era the actual
underlying hardware may well be far from homogenous.
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The basic approach of all four
collaborations can be summarized
as follows : put as much as DAQ
will allow into software triggers

Nevertheless “physics” and
hardware constraints are leading
to implementation differences



DAQ overview
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ALICE performs event compression, not selection, in their software “trigger”
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Detector Online
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The data compression begins
separately within each
subdetector (the First
Level Processors) and then
continues once the whole
event is built within the
Event Processing Node farm.
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DAQ overview
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LHCb’'s upgrade trigger aims to perform an offline-like event reconstruction/selection



I_ H C b DAQ | Detector front-end \\

electronics O

A critical part of the DAQ is the \ - 2

ability to buffer events onto A A AL TN g

hard disks located in the EFF aann N EEER N \/:] g

nodes (“deferred triggering”). : : Nl R I \v//// 3

Versatile Link (Wﬁ ~ 1 S en §

Serves two purposes : multiply gﬁv<7\{§hv A AR - 7
the available processing time, 500 Eventbui

and allow real-time detector
calibration/alignment.

Deployed in Runl gaining 20% in
HLT processing time, will be used

more aggressively in Run2. [ i J
switch ~~~~ switch '_]
LHC il » < interill gap —» Swao - T
) L

A

~

output rate (Mb/s)

deferred triggering active > \ Eventfl Iter Farm
S e S T ~ 80 subfarms

0 1 2 3 4 5 6 7 8 9 10 11
time from start of fill (h)

LHCb’'s upgrade trigger aims to perform an offline-like event reconstruction/selection



DAQ overview
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CMS/ATLAS DAQ

Hardware trigger aside, the CMS
architecture is not far from what LHCb
is planning. Important to note that the
L1 tracking trigger will provide seeds
for the HLT reconstruction however,
which should significantly reduce the
computing burden.

ATLAS plans for a slightly smaller HLT
input rate due to two-stage hardware
trigger design.
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I NEED HELP
MAKING UNREALIS—
TIC ASSUMPTIONS TO
SUPPORT A BUSINESS
CASE FOR A BAD IDEA.

Common assumptions
and technologies



Transistor count

Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Actually a bit more complicated

Fabricati Micro Processors
Architectural change on architectu Codenames Release date
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Stolen from Beat Jost
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Future microprocessor evolution?

Micro Processors
Architectural change Fabrigstic architec Codename Release
Il process ture s date 8p/4p 4P/2P Server/WS
Server
Tick Die shrink Haswell Bmaf“el 2014
14 nm
New
Tock microarchitect Skylake 2015
Tick Die shrink
Elylaks Cannonla
10 nm ke 2016
New
Tock microarchitecture
2017
Tick Die shrink 2018
New 7 nm
Tock microarchitecture 2013
Tick Die shrink 2020
5 nm
New
Togk microarchitecture 2021

Take home message: expect tick-tock and die shrinking to continue for the next years



Extrapolating to the future

Clearly 25% performance improvement per
year 1is not the same as doubling the
performance every 2 years (more like 3).

B.Panzer, shown by N. Neufeld, ECFA 2013
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improvement/year
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Extrapolating to the future

Clearly 25% performance improvement per
year 1is not the same as doubling the
performance every 2 years (more like 3).

However also important to notice that
this is a power law, so small changes in
the assumed %/year lead to big
differences on a 10-20 year timescale.

Relative growth to 2010 HLT reference node

B.Panzer, shown by N. Neufeld, ECFA 2013
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Extrapolating to the future

Clearly 25% performance improvement per

year 1is not the same as doubling the

performance every 2 years (more like 3).

However also important to notice that

this is a power law, so small changes in
the assumed %/year lead to big
differences on a 10-20 year timescale.

CMS and LHCb somewhat more optimistic

than CERN computing, backed up by
observed performance improvements. But
nobody betting the farm on *5%.

Critical point :
new many core architectures!

must fully exploit the

ALICE LHCb ATLAS CMS
Assumed online
performance 25%/year 35%/year 25%/year 35%/year
gains

B.Panzer, shown by N. Neufeld, ECFA 2013

CHF/HS06
1000.0

100.0

10.0

1.0

Price/performance evolution of installed CPU servers

S

CERN Computer Centre

30%

N‘Q- 25%
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..'Q

10
look at the power of the HLT nodes
bought in 2008, 2011, 2012
and foreseen for 2015

extrapolating to 2023 we could
estimate increase by a factor x10

this still leaves a factor x2 (x4) 01

2006

2008 2010 2012 2014 2016

2018

2020

2022

2024
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What remains after Moore’s law

Will need to make significant gains in computing
performance on top of Moore’s law projections,
typically another factor 2-5.

This comes down to exploiting the many-core
architectures more intelligently.

A personal comment : we often discuss absolute
performance in terms of algorithm speed, but for
software triggers latency 1is basically
irrelevant. We should focus on physics/CHF.
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ALICE’s GPU tracking
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ALICE are fully committed to a GPU reconstruction for the TPC in particular. Already

commissioned in Run I! Achieves a threefold increase in performance compared to CPU.



LHCb’s 30 MHz reconstruction

Offline Tracking

Maximum efficiency, no matter the cost!

) |
SciFi o—/ J L K
HCAL  \MUON

RICH2 ECAL

LHCb's vertex detector outside the dipole magnet makes it a slightly special case



LHCb’s 30 MHz reconstruction

Offline Tracking Online Tracking . .
Velo tracking Offline Tracking
X Maximum efficiency, no matter the cost!

Velo-UT tracking
pr > 200 MeV, 3p/p ~ 15%

V
Forward tracking Forward tracking
pr > 70 MeV, 8p/p ~ 0.5% pt > 500 MeV, dp/p ~ 0.5%

Q

Py finding
O o~
[ Rate reducing cuts ] §
Output < 1 MHz ﬁ
C’ VELO Ny
( Muon Identification ) RICH] ==
~ 2 U o
Dl Kaiman it -
- 2 U o SciFi K
HlcHz e BCAL HOAL R MUON

LHCb’'s vertex detector outside the dipole magnet makes it a slightly special case.
Reconstruction timing is basically linear with instantaneous lumi/pileup. Because we

want to catch low momentum tracks crossing the full detector volume it is not trivial to
parallelize the track finding, although a lot work is ongoing into GPU coprocessors.




ATLAS/CMS reconstructions

Enormously challenging environment, and both
experiments are significantly upgrading the
tracking hardware to cope (not topic of this talk)

“EMS event with 50 plleup'
ATLAS/CMS software trigger tracking will be seeded by the Ll track trlgger candidates



ATLAS/CMS reconstructions

Already a lot of work for Run2, vectorizing code
is a hot topic (also on LHCb/ALICE). Also lots of
work on optimal tracking algos for pileup.

ATLAS reports x3 gain for CPU, CMS x2. Will need
more gains like that going towards HL-LHC!
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[ = .
> - <u>=40 . -
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= - .
D 30— —
c - .
Q - ]
g 200 E
T oF ATLAS Simulation E
- RDO to ESD -
0 = | | .

17.2.7.9, 32bit 19.0.3.3, 64bit 19.1.1.1, 64bit

Software release
GM&event wtth 50 plleup'

ATLAS/CMS software trigger tracking will be seeded by the Ll track trlgger candidates



ATLAS/CMS reconstructions

‘ w ‘. .
Also more aggressive ideas being studied, e.g. W_SM.M%w%gﬁ*
different tracking inside/outside the signal ROI. oot i ol R A

Already used in Runl for brems/muon efficiency
recovery. Expect to expand on these strategies.
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ATLAS/CMS software trigger tracking will be seeded by the L1 track trigger c
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Big data, big opportunities

Input data rate of the LHCb upgrade post This means ~20000 PB of data
LS2 = 5 TB/second every year

Google was at ~7000 PB/year in 2008, so goodness knows where it is today...

AT&T networks

BBC iPlayer

Facebook

Data
180 PB 2500 PB 11000 PB year
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A pinch of salt is needed but...

Congratvlations,\ 4 | o
i€ only took you | N
65299 seconds / <

1
O (d \

Wy jolyon.co.uk

Triggers

Triggers
today

in the future

While I am going to mention menus, there are enormous “parasitic”
opportunities for physics beyond the core programmes at the HL-LHC, and we

should expect these to evolve and compete for output bandwidth with the
“core” physics for both ATLAS/CMS and LHCb as we approach the HL-LHC era.

Remember : ALICE keeps all interactions, hence no HLT “menu” as such.



|l HCb HLT menus

Because of the offline-like
reconstruction, can in principle
select any Beauty/Charm decay to
charged tracks (and some with
neutrals) at HLT level.

Several output rate scenarios
being considered, main driver 1is
what we want to do with charm
physics. 2-10 Gb/s output rate
foreseen.
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ATLAS/CMS menus

CMS Category L1 Triggers L1 rate Required HLT rate
(w/ overlaps)  reduction

Muons l’%u 21 kHz ~21 1 kHz

E/Gamma e, ee, 'kep 102 kHz ~ 102 1 kHz
Y. Yy Q

Taus T, 1T, 45;(;§kHz ~ 75 1 kHz
e+T, U+T

Hadronic jets, e+MHT, 13% ~ 138 1 kHz

u+MHT, HTT 4

Others MET, 160 kHz 60 1 kHz
others

Total rate (w/o overlaps) 500 kHz 100 5 kHz

Somewhat different foreseen HLT rejection rates
100:1 for CMS and 40:1 for ATLAS.

Menus very sketchy at present, which is understandable because
really the reconstruction questions are more pressing.



Real time detector calibration
m Job configuration

parallelization on several nodes
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Both LHCb and ALICE plan a real-time detector alignment and calibration. In the LHCb
case this is absolutely critical because it enables hadronic particle identification to
be used in the trigger. Not clear whether CMS/ATLAS need or want to go down this road.




Real time multivariate analyses

MDDAG, Benbouzid, Kegl et al.

LHCb topological trigger

g 1§ 2010 MB Data
= n mmm cc MC10
g ] mmm bb MC10 / _
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BBDT Response

Well known that multivariate analyses perform better than so-called “cut-based”
approaches. Now making their way into HLT algorithms, e.g. LHCb’s inclusive b-physics

trigger in Run I. Real-time data analysis is an area where the private sector invests a
lot, expect significant improvements as a result of collaborations over coming years.




Ceterum censeo...

Nevertheless “physics” and hardware constraints
are leading to implementation differences.

Will be critical to fully exploit multi-core
architectures and opportunities for parallelism

in algorithms if software triggers are to reach
M R | their full potential!

Another big thank you to all the working group members
whose slides/results I have stolen!

The basic approach of all four collaborations can
be summarized as follows : put as much as DAQ
will allow into software triggers.
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Backups



ALICE’s GPU tracking
Why GPUs

= GPUs use their silicon for Aus

= CPUs use their silican mainly for caches,
branch prediction, etc.

Intel Nehalem NVIDIA Kepler

Naively, GPUs gain as long as the cores don’t have to talk to each other.



LHCb DAQ

LHCb’'s DAQ network built around a

bidirectional eventbuilding farm. Max. inst. luminosity s S

Note that about 802 of the CPU in Event-size (mean — zero-suppressed) [kB] ~ 60 (LO accepted) ~ 100

the event-building PCs remains Event-building rate [MHz] - 40

free for implementing the “low- # read-out boards ~ 330 400 - 500

level trlgg?r’.’ ( SeleCtlng on muon link speed from detector [Gbit/s] 1.6 4.5

and CALO primitives) and/or the Sy —E . 100

. 0 ata-rate / read-out boar s

first stages of the event m - !

reconstruction. # detector-links / readout-board up to 24 up to 48
# farm-nodes ~ 1000 (+ 500 in 2015) 1000 - 4000

Need to transport/build 40 Tbit/s # links 100 Gbit/s (from event-builder PCs) n/a 400 - 500
final output rate to tape [kHz] 5 20-100

LHCb’'s upgrade trigger aims to perform an offline-like event reconstruction/selection



