Beyond(the)Standard Model Theory

Gilad Perez

Weizmann Inst.

2nd CCFA HL-LHC Workshop

Rationale: high luminosity search strategy, general principle

(i) Luminosity functions

fall even faster:

are rapidly falling (ex. top phys.):

(ii) Luminosity functions x cross section

 $\frac{d\mathcal{L}(dm^22)^{[4ffev]}}{10} \frac{10}{(2m_t)^2} \frac{10}{m^22} \frac{10}{(10m_t)^2}$

MSTW-PDF running factorisation scale as $Q^2 = \hat{s} = \tau s = \tau \times 14^2 \, {\rm TeV^2}$

Typical τ for $t\bar{t}$ proudction at LHC14: $(2m_t/14\,{\rm TeV})^2\sim 6\times 10^{-4}\,.$

Thus, mass reach $\propto (\text{Lumi})^{\frac{1}{7}}$

See for ex.: Salam-Weiler, http://collider-reach.web.cern.ch/collider-reach/

High luminosity search strategy, general principle

mass reach
$$\propto (\text{Lumi})^{\frac{1}{7}}$$

 Slow progress in energy frontier, still conventional searches should push forward. (will be done in any case regardless of what we discuss today...)

More info' e.g: Salam-Weiler, http://collider-reach.web.cern.ch/collider-reach/

mass reach
$$\propto (\text{Lumi})^{1,\frac{1}{2}}$$
 ?

 Faster progress in "elusive frontier", not too hard physics scale, relatively weak coupling.

Is it possible to characterise the elusive frontier?

Elusive/weakly coupled/exotic physics

Naturalness

Exotica

what should be our focus?

Exotica, signal based (harder to make sys' progress)

Naturalness & the two top frontiers

Shifting fronts, possible status in 3 yrs (lots left behind)

• Case #1 pair differential distributions, graduating from bump searches.

• Case #2 elusive naturalness, flavorful naturalness, the top-charm frontier.

• Case #3 top flavor violation, natural composite $H \& t \to cZ/h$. (if time permits)

Summary.

see also talk by Glover.

Case 1: $t\bar{t}$ distributions & TeV new physics (NP)

• Briefly on the state of the art,2 interesting recent measurements:

ATLAS-CONF-2014-057

SM expectation (courtesy of informal communication with Alex Mitov)

"Statistical integration errors are still too large ... we have a bin for M_tT>1TeV at LHC7TeV ... totally preliminary: similar to NLO, scale +pdf is no more than 30%"

This, not including errors related to boosted techniques and/or pileup mitigation.

Case Ia: trivial weakly coupled broad resonance & & Ex.: RS/composite resonance (KK gluon)

Original models had relatively narrow KK's:

Agashe, Belyaev, Krupovnickas, GP & Virzi (06); Lillie, Randall & Wang (07).

"KK gluon above 1 TeV has width of MKKG/6"

RS/composite *H* <=> strong dynamics => broad but weakly produced

Original models had relatively narrow KK's:

Maybe later (depends on time) implicit motivate: (and regardless of motivation ...)

Case Ib against top-pair resonance searches & The "elusive" KK Gluon

Chala, Juknevich, GP & Santiago, to appear.

Do we search for the right thing?

- The KK gluon is part of the composite sector, it decays to the most composite object allowed by kinematics (t, T).
- *S* parameter: $m_{KKG} > 3$ TeV; naturalness: $m_T < 1$ TeV.
- Searches: $m_{KKG} > 2.5$ TeV; $m_T > 800$ GeV.

Inclusive Search for

Implications for $KKG \Rightarrow T\overline{T}$ decay

Chala, Juknevich, GP & Santiago, to appear.

• As T decays to t + W/Z/h but we search only for tops =>

observed spectrum becomes softer, let us see it in steps:

Implications for $KKG \Rightarrow T\overline{T}$ decay

Chala, Juknevich, GP & Santiago, to appear.

• As T decays to t + W/Z/h but we search only for tops =>

observed spectrum becomes softer, let us see it in steps:

adding SM top pair reconstructed invariant mass

Elusive KKG

Case 2: Elusive top-partners

Could the stops/t' still be light?

Almost all approaches have implications to top phys.:

(i) SUSY, get rid of missing energy in a systematic way:

RPV, stealth, compressed ... (no time to review it all ...)

Could the stops/t' still be light?

Czakon, Mitov, Papucci, Ruderman & Weiler (14)

As well as differential distribution (angular), new result from ATLAS.

Han, Katz, Krohn and Reece; Belanger, Godbole, Hartgring and Niessen (12); Buckley, Plehn and Ramsey-Musolf (13); Li, Si, Wang, Wang, Zhang and Zhu; Mukhopadhyay, Nojiri and Yanagida (14).

More generically understanding top+jets & thinking about gluinos.

Evans, Kats, Shih and Strassler (13)

Could the stops/t' still be light?

Almost all approaches have implications to top phys.:

- (i) SUSY, get rid of missing energy in a systematic way:
 - RPV, stealth, compressing the spectrum. (no time to review it all ...)

(ii) Get rid of tops in the final state => flavor & connection.Applies not only to SUSY.

Flavourful naturalness

- Standard model: 3 copies (flavours) of quarks; same holds for new physics. (say supersymmetry)
- "Hardwired" assumption: top partner (stop) is mass eigenstate.

Dine, Leigh & Kagan, Phys.Rev. D48 (93); Dimopoulos & Giudice (95); Cohen, Kaplan & Nelson (96)

Supersymmetric partners, also come in 3 replicas <=> flavours.

Flavourful naturalness

- Standard model: 3 copies (flavours) of quarks; same holds for new physics. (say supersymmetry)
- "Hardwired" assumption: top partner (stor) 1. mass eigenstate.
 Dine, Leigh & Kagan, Phys.Rev. D48 (93); Dimopoulos & Giudice (95);

Cohen, Kaplan & Nelson (96) > 1000 citations !

Supersymmetric partners, also come in 3 replicas <=> flavours.

This need not be the case, top-partner => "stop-scharm" admixture.

Flavourful naturalness

- Standard model: 3 copies (flavours) of quarks; same holds for new physics. (say supersymmetry)
- "Hardwired" assumption: top partner (stor) 1. mass eigenstate.
 Dine, Leigh & Kagan, Phys.Rev. D48 (93); Dimopoulos & Giudice (95);

Cohen, Kaplan & Nelson (96) > 1000 citations ...

Supersymmetric partners, also come in 3 replicas <=> flavours.

This need not be the case, top-partner => "stop-scharm" admixture.

Flavorful naturalness, ameliorating stops bounds

• The relevant parameters to constituting $m_{\tilde{t}} \sim 400 \,\text{GeV}$ Define relative tuning measure: $\xi = \frac{\tilde{m}_1^2 c^2 + \tilde{m}_2^2 s^2}{m_0^2}$, $(m_0 = 570 \,\text{GeV})$ stop, scharm like squark mass, $m_{1,2}$ & $C \equiv \cos \theta_{23}^{RR}$

Flavorful naturalness, ameliorating stops bounds

Compositeness: split 2 gen' LHC bounds (similar to SUSY case)

Delaunay, Fraille, Flacke, Lee, Panico & GP (13).

Composite natural $t \rightarrow cZ$

- ♦ $t \rightarrow cZ$ null test of the SM.
- $t \rightarrow cZ$ in composite models could be large.

Agashe GP & Soni (06)

• $t \rightarrow cZ$ in custodial composite models could be small.

Agashe, Contino, Da Rold & Pomarol (06)

• $t \rightarrow cZ$ in natural custodial composite models should be large.

As both LH & RH tops needs to be composite, Azatov, Panico GP & Soreq (14)

• One extra prediction tops should be RH polarized.

Azatov, Panico, GP & Soreq (14)

BR($t \rightarrow cZ$) vs. tuning

Azatov, Panico, GP & Soreq (14)

 ϵ =0.3, *M*_{*}=700GeV, 0< θ_V < $\pi/4$

The correlation between BR(t \rightarrow cZ) and the additional fine-tuning of the model FT_{mixing}/FT_t.

The SM semi-irreducible background

◆ *tZj* in the SM is important once BR($t \rightarrow cZ$) < 10⁻⁵ is reached.

 Campbell, Ellis & Rontsch (13)

• Current bound is BR($t \rightarrow cZ$)~ 5x10⁻⁴, more serious studies required before the experimentalists actually go below 10⁻⁴...

Conclusions

- High Lumi' => moderate gain for E-frontier, large gain for elusive frontier.
- Many searches, due to elusive nature <=> improve control on SM dist'.
- •Two frontiers of the (top) battle of naturalness at the LHC (run II) -
 - (i) "mini-energy" frontier of hard phys. keep pushing, no conceptual change.
 - (ii) "mini-intensity" precision frontier of new physics; more demanding searches, require closer contact \w SM groups both for TH & EXP.
- •Tried to discuss several different searches that would potential gain -(i) top-pair distributions; (ii) top-charm frontier; (iii) top flavor violation.

Asymmetric $t\bar{t}$ events and top tagging

Backovic, JJ, Perez, Soreq

We define an asymmetry for truth level tops to quantify the p_T imbalance in $t\bar{t}$ events

$$A_{t\bar{t}}^{SV} = \frac{|\vec{p}_{T,t} + \vec{p}_{T,\bar{t}}|}{p_{T,t} + p_{T,\bar{t}}}$$

Asymmetric events are also a background to $t\bar{t}$ resonance searches

Top template tagger can remove more asymmetric events than d_{12} + mass cut

Top Tagging Techniques 26 / 28

What is the impact of stop-flavor-violation on tuning ? (flavored naturalness)

- Flavor: only $\tilde{t}_R \tilde{u}_R$ or $\tilde{t}_R \tilde{c}_R$ sizable mixing is allowed.
- Naively sounds crazy ...

Dine, Leigh & Kagan (93); Dimopoulos & Giudice (95).

What is the impact of adding flavor violation on stop searches ? (flavorful naturalness)

• Flavor: only $\tilde{t}_R - \tilde{u}_R$ or $\tilde{t}_R - \tilde{c}_R$ sizable mixing is allowed.

Naively sounds crazy as worsening the fine tuning problem.

$$h \cdots \underbrace{\psi_{t}}^{t} \psi_{t} \cdots h \qquad \qquad \int_{h}^{t} \underbrace{\psi_{L,R}}_{h} \frac{c_{R}}{c_{R}} \delta m_{Hu}^{2} = -\frac{3y_{t}^{2}}{8\pi^{2}} \left(m_{\tilde{t}_{L}}^{2} + \cos^{2}\theta_{23}^{RR}m_{1}^{2} + \sin^{2}\theta_{23}^{RR}m_{2}^{2}\right)$$

However, as you'll see soon the scharm can be light...

• The " $\tilde{t}_R \tilde{t}_R^*$ " $\to t_R t_R^*$ production is suppressed by $(\cos \theta_{23}^R)^4$.

Potentially: new hole in searches, possibly improve naturalness

• RH stops & naturalness, $m_{\tilde{t}_R} \gtrsim m_0 = 570 \,\mathrm{GeV}$

Analysis applies for ATLAS (12); now new bounds from ATLAS and CMS around 670 GeV.

• To constrain, look for: *tt*, *cc* & *tc* + MET (very qualitative).

36

Conclusions

 Subjective: despite entering the "boosted" era (not in Higgs) the "jet-substructure" field is behind the rest of the PQCD one.

More energy => about to enter "hybrid-boosted" era.

Elusive: light (non-"sups") squarks/partners maybe buried.

Stop-scharm mixing might lead to improve naturalness.

• Ask for new type of searches, charm tagging important, linked to CPV in D mixing, soon to be tested at LHCb.

Next-to-leading order effects

Are top pairs in high- p_T events always back to back?

How do 2 and 3 change distributions?

Salam, '13, ATLAS Top WG

Backovic, Gabizon, Juknevich, GP & Soreq (13)

Putting stops aside, what are the bounds on first 2generation "light" squarks?

What drives the experimental limits?

- Squark multiplicity;
- Signal efficiencies;
- Production rate, PDFs.

What drives the experimental $\tilde{lim}_{\tilde{r}}$ (\tilde{c}, \tilde{s})

 $(u, d)_L, (u, s)_L$

Squark multiplicity;
Li UR i dRi UR i dRi Ki Li Signal efficiencies;
Li CR i SR i SR i Rick
Production rate, PDFs.

 $\tilde{d}_R, \ \tilde{s}_R \ \tilde{d}_R, \ \tilde{s}_R \ \tilde{d}_R, \ \tilde{s}_R \ \tilde{d}_R$

Multiplicity: how bound changes when one doublet is made lighter ? Cross-sections vs. mass^{u_R}, \tilde{c}_R \tilde{u}_R , $\tilde{c}_R^{u_R}$, $\tilde{c}_R^{u_R}$, \tilde{c}_R

Efficiencies, strong mass dependence!

PDFs: all 4 flavor "sea" squarks can be light!

Mahbubani, Papucci, GP, Ruderman & Weiler (12).

Single squark can be as light as 400-500 GeV!

Mahbubani, Papucci, GP, Ruderman & Weiler (12).

Open parenthesis

Charm tagging at the LHC ATLAS EPS 2013

• In new ATLAS search for stop decay to charm + neutralino ($\tilde{t} \rightarrow c + \chi^0$) charm jet tagging has been employed for the first time at LHC

ATLAS-CONF-2013-068

 charm jets identified by combining "information from the impact parameters of displaced tracks and topological properties of secondary and tertiary decay vertices" using multivariate techniques

> • 'medium' operating point: c-tagging efficiency = 20%, rejection factor of 5 for b jets, 140 for light jets. #'s obtained for simulated $t\bar{t}$ events for jets with $30 < p_T < 200$, and calibrated with data

