Thanks to

P. Antonioli (ALICE) A.M. Henriques Correia (ATLAS) N. Harnew (LHCb) C. Tully (CMS) S.Fartoukh (LHC)

Large Area Timing Detectors

Tommaso Tabarelli de Fatis (CMS) Università and INFN di Milano-Bicocca

High Luminosity LHC Experiments Workshop - 2014

BICOCCA

INFN

1

2014, Oct 22h

Large area timing detectors at (HL)-LHC

- Conventional use of timing detectors:
 - Particle identification in Time-of-Flight systems
 - One successful example at LHC:
 - ALICE TOF: 80 ps over 140 m² [low rate environment ~ 0.1 kHz / cm²]
 - One R&D ongoing for LHC detector upgrades:
 - LHCb -TORCH: aim at ~15 ps per track [higher rate environment ~ 1 hit / cm² every 25 ns]

Proposed use of timing detectors at HL-LHC:

- Pileup mitigation with combined time and vertex reconstruction
- Potential and feasibility being considered by ATLAS and CMS
- Focus of this talk

INFN

[1] [2]

[3] [4] [5]

[6]

[7] [8]

[9] [10]

[11] [12]

[13]

[14] [15] [16] [17]

[18] [19]

[20]

Vertex density at HL-LHC

Event reconstruction challenges

INFN Dissect collisions with time

Spread of collision time ~ 160 ps

[1] [2]

[3]

[4]

'Effective *pileup*' similar to current LHC with ~20 ps resolution

[or can read this as "with better timing could stand even higher pileup"]

INFN Example study: individual particle time

Time spread of prompt and pileup photons and pions at ECAL

PU = 140, 14 TeV

- TOF from the primary • collision vertex to the ECAL cell
- [No dedicated timing detector]
- Assumed time resolutions ~ 50 ps
- Photon/pion time from cluster with highest energy deposition

[1] [2]

[3] [4]

Example study: $H \rightarrow \gamma \gamma$

[CMS CR-2014-074]

Has to identify benchmark signatures to quantify performance gain

Time resolution ATLAS/CMS – Run I

- **Similar time resolution in ATLAS and CMS**
 - Clock jitter, time calibration stability, …

[20]

8

- Below ~20 GeV resolution dominated by noise term
 - Insufficient for pileup mitigation purposes

TTdF - High Luminosity LHC Experiments Workshop - 2014

2014, Oct 22h

 10^{4}

 10^{3}

10²

10

LHCb – TORCH R&D

[1]

[2]

[3] [4]

[5] [6]

[7]

[8] [9]

[10]

10

TOF using Cherenkov emission readout via total internal reflection

- Position measurement of detected photons to correct time for photon path
- Residual spread ~50 ps (defines pixel size)

Photon detector: pixelated PMT-MCPs

- Readout chain based on NINO + HPTDC
- σ_{p.e.}~ 40 ps (including readout)

TTdF - High Luminosity LHC Experiments Workshop - 2014

[1]

[2]

[3] [4] [5]

[6] [7] [8] [9]

[10]

[12] [13]

[14] [15] [16]

[17]

[18] [19]

[20]

11

Boost precision with multiplicity [i.e. system aspects < 10 ps]

Proposal to LHCb upon completion of the R&D phase (by 2016) Customized pixel size, high active area, extended PMT-MCP lifetime, ...

Detector concepts ATLAS/CMS Upgrade

- Timing of photons to ~20 ps
- Timing of vertices (< 20 ps) from charged particles
 - Granularity of order 1 cm² (time-walk, occupancy, shower size)
 - Active area of order 10 m² (endcap only) for ~10⁵ channels
 - ▶ Rate capability: 10⁶-10⁷ Hz
 - Radiation hardness: 10 Mrad 10¹⁵/cm²

Shower Max – dedicated layer(s) embedded in the EM calorimeter or from the full longitudinal EM energy profile

Timing Layer – a low-mass accompaniment to a silicon tracking system situated in front of a calorimeter system

Pre-shower – front compartment of the electromagnetic calorimeter - balancing low occupancy MIP identification with EM showering

ĮNFŃ

[1] [2]

[3] [4]

[5] [6]

[7]

[8] [9]

[10]

ATLAS Phase II options for timing

Options for a fast timing layer in front of the endcap calorimeters:

- Tracking extension
- II. Pre-shower or highly segmented calorimeter layer for e/γ ID [e.g. Si/W layers with high-precision timing]

Attentive to challenging R&D: radiation hard options having simultaneous time-position resolution

Segmented timing detectors (100 μm; ~10ps) at 2.5<η<4

Area ~ 5 m² (5 cm depth) on each z-side from removal of the Minimum Bias Trigger Scintillators

From A.M. Henriques Correia

Expected performance assessment and recommendations by ~March 2015

2014, Oct 22h

I.

CMS Phase II options for timing

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]

[14]

[15] [16]

[17]

[18]

[19]

[20]

Several R&D projects towards precision timing

ECAL endcap (complete rebuild):

- I. Timing from scintillation pulses (LYSO/W Shashlik)
- II. Dedicated timing layer (W/Si sampling calorimeter)
- III. Timing layer in a preshower (either calorimeter)
- Barrel: may optimize ECAL readout electronics
 - [thin timing layer at the end of the tracker?]

Performance assessment and recommendations by ~ September 2015

TTdF - High Luminosity LHC Experiments Workshop - 2014 2014, Oct 22h

1.5 < **n** < 3

~7 m² each side

ĮNFŃ Detector technologies: some examples

Micro-channel plate detectors

- Coupled to a Cherenkov radiator:
 - 20-30 ps in shower detection at beam tests
- MIP MCP lavers Anode

Anode

- [A.Ronzhin et al, NIM A 759 (2014) 65] П
- Confirms results on MIPs with PMT-MCPs obtained by several groups [e.g. ALICE FIT-T0+, W.Riegler, ALICE Upgrade, this Workshop]

IF.Cavallari et.al., i=MCPՆ Events 35 Secondary Time resolution ~ 40 ps Efficiency to MIPs w/ radiator Number of Number ³⁰ at shower max (e- beam) emission device: w/o radiator 2000 2500 3000 Bias voltage (V) 20 15 MIP 10 5 Preliminary-

[A.Ronzhin et al.]

[20]

[1]

[2]

[3]

15

Detector technologies: some examples

- Micro-channel plates R&D aspects
- Operation in Magnetic field (tested up to 2 T)
- Need lifetimes above 50 C/cm² (x 10 TORCH)
 - Achieved >5 C/cm² in PMT-MCPs with Atomic Layer Deposition (ALD) coatings [e.g. PANDA ToF: <u>A.Lehmann et al., NIM A718 (2013) 535</u>]

R&Ds in several groups (not only LHC)

► LAPPD collaboration → R&D towards mass production of large area MCPs [LAPPD Docs: <u>http://psec.uchicago.edu/</u>]

[1]

[2] [3]

[4]

[5]

[6] [7]

[8]

[9] [10]

[11] [12]

[13] [14]

[15] [16]

[17]

[18]

[19] [20]

TTdF - High Luminosity LHC Experiments Workshop - 2014 2014, Oct 22h

17

INFN

Detector technologies: some examples

GasPMT: thin gas-detector (Micromegas) with radiator window

- Localize primary ionization in photocathode
- Resolution determined by longitudinal diffusion in the gas

[1]

[2] [3]

[4] [5] [6]

[7] [8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

TTdF - High Luminosity LHC Experiments Workshop - 2014 2014, Oct 22h

Electronics and system aspects

Readout electronics

R&D: rad-hardness, speed, power, technology optimization, ...

System aspects: clock distribution jitter, stability, ...

- Remote clock synchronization to better than 20 ps:
 - <u>White Rabbit (CERN)</u> remote clock synch with Ethernet technology
 - <u>Universal Picosecond Timing System</u>: 20 ps including long term stability

[1] [2]

[3]

[4]

[5]

[6]

[7] [8] [9]

[10]

[11]

[12] [13]

[14]

[15]

[16] [17]

[18] [19]

[20]

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]

ALICE-TOF: Successful example of fast timing on a large area

- 80 ps on 10⁵ channels
 No upgrade planned
- LHCb TORCH R&D: TOF concept using Cherenkov emission
 - Aim at 15 ps on 10⁵ channels Completion of R&D in 2016

No fundamental limitations to pileup mitigation with fast timing detectors in CMS and ATLAS

- Different devices could match desired performance
 - Usual radiation hardness issues
- Clock distribution, relative calibration and stability to 10 ps over 10⁵ channels could be the challenge
- Has to verify advantage and incremental gain in performance beyond current pileup suppression methods

Complete feasibility study by spring / summer (ATLAS / CMS) 2015

