

Lucio Rossi and Oliver Brüning For the HL-LHC Project team

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 Capacities Specific Programme, Grant Agreement 284404.

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

Oliver Brüning, CERN

Goal of High Luminosity LHC (HL-LHC):

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

Prepare machine for operation beyond 2025 and up to 2035

Devise beam parameters and operation scenarios for:

enabling a total integrated luminosity of **3000 fb**⁻¹

implying an integrated luminosity of 250 fb⁻¹ to 300 fb⁻¹ / year,
 # design oper. for μ δ 140 (→ peak luminosity of 5 10³⁴ cm⁻² s⁻¹)
 # design equipment for 'ultimate' performance of 7.5 10³⁴ cm⁻² s⁻¹
 > Ten times the luminosity reach of first 10 years of LHC operation!!

HL-LHC goal could be reached in 2036

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

Oliver Brüning, CERN

LHC Upgrade Goals: Performance optimization

Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, S_s)$$

 \rightarrow 1) maximize bunch intensities \rightarrow Injector complex \rightarrow 2) minimize the beam emittance LIU \Leftrightarrow IBS \rightarrow 3) minimize beam size (constant beam power); \rightarrow triplet aperture \rightarrow 4) maximize number of bunches (beam power); $\rightarrow 25$ ns \rightarrow 5) compensate for 'F'; \rightarrow Crab Cavities \rightarrow 6) Improve machine 'Efficiency' \rightarrow minimize number of unscheduled beam aborts uminosity

HL-LHC Performance Goals

Design HL-LHC for Virtual luminosity: $L > 10 \ 10^{34} \ cm^{-2} \ s^{-1}$

- Peak Luminosity limitation(s):
 - Event Pileup in detectors
 - Debris leaving the experiments and impacting in the machine (magnet quench protection @ heat load)

Operate with Leveled peak luminosity: $L = 5-7.5 \ 10^{34} \ cm^{-2} \ s^{-1}$

Maximize the time spend in physics production:

- Machine efficiency
- Scheduled physics time
- Turnaround time

LHC Upgrade Goals: Performance optimization

• Levelling:

Luminosity

- Integrated Luminosity limitation(s):
 - Average Fill length (must be larger then levelling time!)
 - Average Tournaround time (must be small wrt fill length)
 - Number of operation days (must be as large as possible)
 - Overall machine efficiency (fraction of physics over scheduled time)

LHC Limitations and Challanges:

- Technical bottle necks (e.g. cryogenics) → New addit. Equipment
- Insertion magnet lifetime and aperture:
 - → New insertion magnets and triplets with increased aperture
- Geometric Reduction Factor:
 SC Crab Cavities
 - ➔ New technology and a first for a hadron storage ring!
- Small β^{*} optics (chromatic aberration and matching to arc optics):
 → ATS optics
- Performance Optimization: Pile-up density → luminosity levelling
 → devise parameters for virtual luminosity >> target luminosity

LHC Limitations and Challanges:

• Beam intensity and impedance (beam stability)

→ low impedance collimator materials

• Beam power & losses

→ additional DS (cold region) collimators

• Machine effciency and availability:

R2E → removal of all electronics from tunnel region
e-cloud → beam scrubbing (conditioning of surface)
UFOs → beam scrubbing (conditioning of surface)

Eliminating Technical Bottlenecks Cryogenics P4- P1 – P5

HL-LHC technical bottleneck:

Radiation damage to triplet magnets at 300 fb⁻¹

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magnets coils receive a similar radiation dose at 10 times higher integrated luminosity!!!!!

40

distance from IP [m]

40

DU

22

ZU

ົງກ

30

 $Z\mathfrak{I}$

Current Beam Screen design

Kersevan's talk, Kick off meeting, Daresbury Nov. 2013:

- Tunsgten blocks, 40 cm long,
- Soldered onto the beam screen

Aperture model in HLLHCV1.0:

He (1.5 mm), CB (5 mm), CB to BS (1.5 mm), BS (2 mm), W(16/6 mm)

 \rightarrow Aperture: 118/98 mm

```
<u>lssues:</u>
```

- Soldering of tungsten block

Requires aperture inside the triplet magnets!

Support system and alignment tolerances for a heavy installation

HL-LHC Challenges: Crossing Angle I

efficient operation requires large beam separation at unwanted collision points Separation of 10 -12 σ \rightarrow large triplet apertures for HL-LHC upgrade!!

HL-LHC Upgrade Ingredients: Triplet Magnets

- Nominal LHC triplet: 210 T/m, 70 mm coil aperture
 - → ca. 8 T @ coil
 - → 1.8 K cooling with superfluid He (thermal conductivity)
 - → current density of 2.75 kA / mm²
- At the limit of NbTi technology (HERA & Tevatron ca. 5 T @ 2kA/mm²)!!!
- LHC Production in collaboration with USA and KEK

Critical Surface for NbTi

HL-LHC Magnets:

- LHC triplet:
 - 210 T/m, 70 mm bore aperture
 - → 8 T @ coil (limit of NbTi tech.)
- HL-LHC triplet:
 - 140 T/m, 150 mm coil aperture
- (shielding, $\boldsymbol{\beta}^{*}$ and crossing angle)
 - → ca. 12 T @ coil → 30% longer
 - Requires Nb₃Sn technology
 - ➔ ceramic type material (fragile)
 - → ca. 25 year development for this new magnet technology!
 - US-LARP CERN collaboration

US-LARP MQXF magnet design Based on Nb₃Sn technology

LHC low-β quads: steps in magnet technology from LHC toward HL-LHC

Progress with Triplet magnets:

LARP & CERN MQXF Ø150 mm, B_{peak}~ 12.1 T 2013-2020 long → 4m to 6.8m

New Interaction Region lay out

Thick boxes are magnetic lengths -- Thin boxes are cryostats

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

High Luminosity

<u>HL-LHC Challenges: Small β*</u>

Small β^* is limited by aperture but not only: <u>optics matching & flexibility</u> (round and flat optics), chromatic effects (not only Q'), spurious dispersion from X-angle,..

A novel optics scheme was developed to reach un-precedent β^* w/o chromatic limit based on a kind of generalized squeeze involving 50% of the ring (S. Fartoukh)

Beam sizes [mm] @ 7 TeV from IR8 to IR2 for typical ATS

"pre-squeezed" optics (left) and "telescopic" collision optics (right)

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

Luminosity

Oliver Brüning, CERN

Large aperture Insertion Magnets

ATS optics and small β^* also require new, large aperture Insertion Region magnets: D1, D2, Q4 and Q5

The HL-LHC IR NbTi magnet zoo...

(B) Hus density (T) 2.748 2.599 2,450 2,300 2.151 2.001 1.852 1,700 1,552 1,400 1,253 1.104 0.954 0.805 8455 0,506 0.356 0.206 ROXIE ===

Nested Orbit corrector (CIEMAT) HO correctors: superferric (INFN)

geometric luminosity reduction factor:

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

large crossing angle:

Luminosity

- → reduction of long range beam-beam interactions
- \rightarrow reduction of beam-beam tune spread and resonances
- \rightarrow reduction of the mechanical aperture
- \rightarrow increase of effective beam cross section at IP
- → reduction of luminous region
- → reduction of instantaneous luminosity
 - → inefficient use of beam current!

 b^*

HL-LHC Upgrade Ingredients: Crab Cavities

- GeamCarrictiesminosity
 Reduction Factor:
 Reduces the effect of geometrical reduction factor
- Independent for each IP

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

Kota, KEK

- Noise from cavities to beam?!?
- Challenging space constraints

Compact cavities aiming at small footprint & <u>400 MHz</u>, ~5 MV/cavity

HWSR, SLAC-LARP

HWDR, JLAB.OD

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

DR. UK. TechX

Development of 3 Crab Cavity prototypes:

RF-Dipole Nb prototype [ODU-SLAC]

High Luminosity 4-rod in SM18 for RF measurements [Lancaster UK]

Concept of RF Power system

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

Oliver Brüning, CERN

And excellent first results: e.g. RF dipole > 5 MV

1/4 w and 4-rods also tested (1.5 MV)

Latest cavity designs toward accelerator

25

HL-LHC Challenge: Event Pileup Density

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV

Vertex Reconstru 60

<µ> = 21

60

HL-LHC Performance Optimization: Use leveling techniques for keeping

Use leveling techniques for keeping average

Pileup around 140 to 200 events per bunch crossing

 \rightarrow level luminosity at 5 to 7.5 10³⁴ cm⁻² s⁻¹

HL-LHC Baseline Parameters:

Parameter	- 2	Nominal LHC	HL-LHC 25ns t) (standard)	HL-LHC 25 ns (BCMS)	HL-LHC 50ns	
Beam energy in collision [TeV] $f_{rev} n_h \Lambda$	V_{h}^{2}	7	7	7	7	ſ
$L = \gamma \frac{1}{1 - \gamma}$	*	R 1.15E+	11 2.2E+1	2.2E11	3.5E+11	
n_{b} $4\pi \varepsilon_{n}\beta$	Ŧ	28	08 2748	¹ 2604	1404	
Number of collisions at IP1 and IP5	4	28	08 273	5 2592	1404	
N _{tot}	u	3.2E+	14 6.0E+1 4	4 5.7E+14	4.9E+14	i II
beam current [A] Impedance, efficient	cv et	C. 0.	58 1.0	1.03	0.89	i II
x-ing angle [µrad]	cy ct	2	85 59	5 90	590	
beam separation [σ]		g).4 12.	5 12.5	11.4	
β [*] [m] ATS require	ed	0.	55 0.1 !	0.15	0.15	ľ
ε _n [μm]		3.	75 2.5	2.50	3	
ε _L [eVs]		2.	50 2.5	2.50	2.50	
r.m.s. energy spread		1.13E-	04 1.13E-0 4	1 1.13E-04	1.13E-04	
r.m.s. bunch length [m]		7.55E-	02 7.55E-0 2	2 7.55E-02	7.55E-02	
IBS horizontal [h]		80 -> 1	06 18.	5 18.5	17.2	
IBS longitudinal [h]		61 ->	60 20. 4	1 20.4	16.1	
Piwinski angle		0.	65 3.1 4	4 3.14	2.87	
Geometric loss factor R0 without crab-cavi Crab Cavity	rea	uired ^{0.8}	36 0.30 !	0.305	0.331	
Geometric loss factor R1 with crab-cavity	ieq	0.98	(1) 0.82	0.829	0.838	
beam-beam / IP without Crab Cavity		3.1E-	03 3.3E-0	3.3E-03	4.7E-03	
beam-beam / IP with Crab cavity		3.8E-	03 1.1E-0 2	2 1.1E-02	1.4E-02	
Peak Luminosity without crab-cavity [cm ⁻² s ⁻¹]		1.00E+	34 7.18E+3 4	4 6.80E+34	8.44E+34	
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]		(1.18E+3	(4) 19.54E+3	1 8.52E+34	21.38E+34	
Events / crossing without levelling w/o crab-cavity			27 19	3 198	454	
Levelled Luminosity [cm ⁻² s ⁻¹]			5.00E+34	4 5.00E34	2.50E+34	
Events / crossing (with levelling and crab-cavities for HL Lev	<i>velin</i>	g required	13	3 146	135	
Peak line density			1.2	5 1.31	1.20	
Levelling time [h Efficiency requires long fill tin	mes	(ca. 10h)!	8.3 Oliver Brun	3 7.6	18.0	-

LHC Challenges: Beam Power

- Unprecedented beam power:
- Worry about beam losses:
- Failure Scenarios -> Local beam Impact
 - → Equipment damage
 - ➔ Machine Protection
- Lifetime & Loss Spikes -> Distributed losses
 - ➔ Magnet Quench
 - → R2E and SEU
 - ➔ Machine efficiency

Luminosit

DS collimators – 11 T Dipole (LS2 -2018)

FNAL: MBHSP01 – 1-in-1 Demonstrator (2 m)

40-strand cable fabricated using FNAL cabling machine

Coil fabrication

Collared coil assembly

Cold mass assembly

MBHSP02 passed 11 T field during training at 1.9 K with I = 12080A on 5th March 2013!

Prototyping of cryogenics bypass @ CERN

Prototyping of the by-pass crystostat (QTC) for the installation of a warm collimator in the cold dispersion suppressors.

HL-LHC Challenges: Impedance

Low impedence collimators(LS2 & LS3)

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

Oliver Brüning, CERN

HL-LHC Goals: Integrated Luminosity

HL-LHC Goals: → Integrated Luminosity

Operation experience in 2011 and 2012:

J. Wenninger @ Evian LHC Operation workshop

□ Only ~30% of the fills are dumped by operation!

HL-LHC will require significantly longer average fill length

>> average Turnaround time and leveling time (ca. 10 hours)!!!!

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

Oliver Brüning, CERN

HL-LHC Challenge: Machine Efficiency

R2E SEU Failure Analysis - Actions

2008-2011

- Analyze and mitigate all safety relevant cases and limit global impact
- 2011-2012
 - Focus on equipment with long downtimes; provide shielding
- LS1 (2013/2014)
 - Relocation of power converters
- LS1 LS2:

- Equipment Upgrades
- LS3 -> HL-LHC
 - Remove all sensitive equipment from underground installations

HL-LHC Baseline Summary:

- Cryogenic system upgrade (IR1&5 and IR4)
- Tungsten shielding for triplet
- New large aperture triplet magnets (Nb₃Sn)
- New Large aperture Insertion magnets (NbTi)
- Crab Cavities for compensation of geom. Reduction
- Operation with Luminosity leveling
- Collimation upgrade (DS and impedance)
- R2E and superconducting link

The critical zones around IP1 and IP5

3. For collimation we also need to change the DS in the continuous cryostat: 11T Nb₃Sn dipole

MOM/C

ណា

iowa.

2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2, Q4 & corrector New triplet Nb₃Sn required due to:
 Radiation damage
 Need for more aperture

Changing the triplet region is not enough for reaching the HL-LHC goal!

 More than 1.2 km of LHC !!
 Plus technical infrastructure (e.g. Cryo and Powering)!! ATLAS

CMS

HL-LHC Options:

- Hollow electron lens (halo beam removal)
- Long Range Beam-Beam wire compensators (reduction of crossing angle)
- Flat beam operation (reduction of crossing angle)
- Crab Kissing Scheme
- Higher or lower harmonic RF system (bunch profile and beam stability)

Implementation plan:

- PDR: Oct 2014 ; Ext. Cost & Schedule Review in March2015;
- TDR: OCT 2015; TDR_v2 : 2017
- Cryo, SC links, Collimators, Diagnostics, etc. starts in LS2 (2018)
- Proof of main hardware by 2016; Prototypes by 2017 (IT, CC)
- Start construction 2018 from: IT, CC, other main hardware
- IT String test (integration) in 2019-20; Main Installation 2023-24
- Tough but based on LHC experience feasible

Project approval milestones:

- June 2010: launch of High Luminosity LHC
- November 2010 : HiLumi DS application to FP7
- November 2011: start FP7-HiLumi DS
- May 2013: approval of HL-LHC as 1st priority of EU-HEP strategy by CERN Council in Brussels
- May 2014: US P5 ranks HL-LHC as priority for DOE

(Particle Physics Project Prioritization Panel)

- June 2014: CERN Council approves the financial plan of HL-LHC till 2025 (with an overall 10% budget cut)
- Spring 2015: Cost and Schedule Review for LIU and HL-LHC

LHC schedule beyond LS1

- LS2 starting in 2018 (July)
- LS3 LHC: starting in 2023 Injectors: in 2024
- => 18 months + 3 months BC
- => 30 months + 3 months BC
- => 13 months + 3 months BC

(Extended) Year End Technical Stop: (E)YETS

High Luminosity LHC Goal of 3'000 fb⁻¹ by mid 2030ies

Oliver Brüning, CERN

Reserve Transparencies

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

Oliver Brüning, CERN

SPS beam test: a critical step for CC (profiting of the EYETS 2016- 2017)

SPS test is critical: at least one cryomodule before LS2, possibly two, of different cavity type.

A test in LHC P4 is kept as a possibility but it is not in the baseline)

 \varnothing = 90 mm. 2 K 11.6 MV required voltage ; baseline is 4 cavites/beam-side, \Rightarrow 2.9MV/cavity

In-kind contribution and Collaboration for HW design and prototypes

Q1-Q3 : R&D, Design, Prototypes and in-kind **USA** D1 : R&D, Design, Prototypes and in-kind **JP** MCBX : Design and Prototype **ES** HO Correctors: Design and Prototypes **IT** Q4 : Design and Prototype **FR**

ECFA High Luminosity LHC Experiments Workshop - 2014, Aix-Les-Bain

Oliver Brüning, CERN

LHC Performance Projection

Controlling halo diffusion rate: hollow e-lens (synergy with LRBBCW)

Promises of hollow e-lens:

- 1. Control the halo dynamics without affecting the beam core;
- Control the time-profile of beam losses (avoid loss spikes);
- 3. Control the steady halo population (crucial in case of CC fast failures).
- Remarks:
- very convincing experimental experience in other machines!
 full potential can be exploited if appropriate halo monitoring is available.

HL-LHC Goals: Integrated Luminosity

ECFA High Luminosity LHC Experiments Workshop – 2014, Aix-Les-Bain

Oliver Brüning, CERN

Upgrade Considerations: Integrated Luminosity

Phase	Days		Comment	
Commissioning	21			
Scrubbing run	10			
5 MDs	22		4.5 days per slot	
6 Technical stops	30		5 days (4 days TS plus 1 day recovery with beam)	
Special requests	10		TOTEM/ALPHA Intermediate energy run Luminosity scans	
Intensity ramp up	~39	Con	hone for as 160 days	
Total high intensity	~130	for	HL-LHC operation!!!	/ yeu
lon setup	4	•		
lon physics	24			
TOTAL	290			
Luminosity LHC schedule 2011 v2.0 ECFA High Luminosity LHC Experiments Wo	55 rkshop – 2014, Aix-Les-B	M. ain	Lamont March 2011 16-	·3-2011

Operational Efficiency:

Alick McPherson @ Evian 2012

Efficiency = average time spend in physics production / 24h

for the scheduled physics production days

ECFA High Luminosity LHC Experiments Workshop - 2014, Aix-Les-Bain

Luminosity

<u>Required Efficiency for HL-LHC JLdt Goal:</u>

• Estimates are based on standard operation cycle and 160 days of physics production:

