Trends and synergies in solid state tracking R&D

Executive Summary of the session

Frank Hartmann

Sensors @ HL-LHC

- Extensive R&D campaigns happened in all experiments. Baselines defined with options to follow up.
 - For ATLAS and CMS Outer Tracker well defined
 - Common ATLAS & CMS Market Survey for Outer Tracker for AC-coupled sensors
 - More studies necessary for inner pixel
 - Some common ATLAS/CMS wafer submissions planned

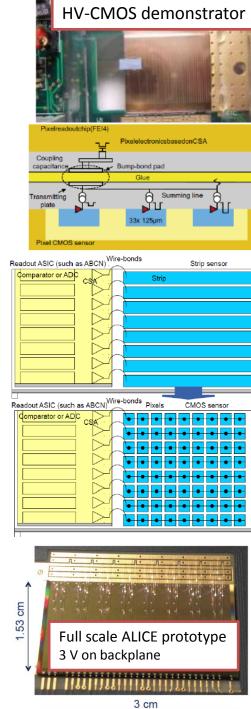
	Strips/strixel baseline	Pixel <u>outer</u> layers baseline / options	Pixel <u>inne</u> r layers baseline / options	Special
ALICE				
ATLAS	 n-in-p planar FZ 300µm thick AC-coupled and/or HV-CMOS 	 n-in-p (n) planar and/or HR/HV- CMOS 	 n-in-n planar 100-200µm active thickness and/or HR/HV-CMOS and/or 3D and/or diamonds 	With ~700m ² needs to be factored in the global on a
CMS	 n-in-p planar FZ 200μm active thickness AC- and DC-coupled and/or MCz (pref) and/or 300 μm 	 n-in-p planar 100-200µm active thickness 	 n-in-p planar 100-200µm active thickness and/or 3D sensors 	 HGCAL p-in-n planar DC-coupled large PAD sensors 100-300µm active thickness (deep diffused) Or n-in-p (deep diffused)
LHCb	UT planar n-in-p • or p-in-n	VELO planar n-in-p • or n-in-n		

Pixel Sensors – Challenges and Synergies

- Evaluation which sensor technology will withstand the radiation • at the innermost pixel layer(s).
 - *Diamond*? 3D? **Planar** (would be wonderful because it is simple)?

ATLAS & CNIS

- By the way for planar voltage helps!
- Is 3D compatible with the small pitch (ratio column radius vs. column depth)
- Are diamonds available? Is polarization a problem?
- Pitch of 25 μ m (baseline is ~50x50 μ m² or 25x100 μ m²)
 - BB on small sensor pitch 25 μ m to demonstrated reliably within industry
 - Cell size? Probably not a problem!
 - Cell isolation? Breakdown voltage?
 - Bias grid how to? Do we need one?
- Solution for sparking with n-in-p sensors ۲
 - Industry solution? In-house?
- Synergies ATLAS & CMS & LHCb Is there a limit on physical sensor thickness • to be assembled with acceptable yield?
 - Bow and bump bonding??


HR/HV-CMOS

- HR/HV-CMOS is a very appealing and interesting technology.
 - It could solve lots of issues, especially in case of a full monolithic approach
 - Ideas are being evaluated to use it to replace the standard pixel and/or strip sensors at lower cost still together with standard CMOS chips
 - 'Standard' CMOS process (but HV) instead of dedicated process
 - Gluing replaces high cost bump bonding in pixel case
- Unfortunately it has not been consequently picked up by a dedicated R&D collaboration some years ago.
- Can the technology be matured in time for HL-LHC?
 - R&D!

Not an HL-LHC baseline

- System changes?
- Power?
- Potential cost savings to be demonstrated
 - Taking the whole system into account
- ALICE: MAPS is a natural bet for ALICE with the less stringent requirement on radiation tolerance and readout frequency
 - Nice monolithic light weight approach

ALICE baseline

Pixel Electronics

- CMS & ATLAS have the 'same' requirements \rightarrow RD53
- 100×25μm²

- Radiation tolerance, complicated digital logic
 - Buffering, readout rate, SEUs, ON/OFF of chip cells to match sensor cells
- Less synergies with LHCb although many similar challenges
- No real synergies with ALICE
- In addition, urgent increase of effort necessary
 - on electrical links
 - on powering

	Bump pitch μm	Pixel size μm	Trigger rate	Readout	Mass / layer % X0
ALICE	Mono- lithic	30 x 30	1/30 µs	All data w/rolling shutter or priority encoder	~0.3 (*)
LHC-b	55 x 55	55 x 55	40 MHz	All data	~0.5 (*)
ATLAS	50 x 50 50x100	50 x 50 or 25 x 100 50 x 100	1 MHz	Triggered time stamp	~1.0
CMS	50 x 50 100x100	50 x 50 or 25 x 100 100 x 100	1 MHz	Triggered time stamp	~1.0

(*) At smallest radius. Goes up with radius

Share Challenge

We really appreciate RD50&RD53 and the common platforms they provide!!

