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Scale of challenge: data
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* Crude estimates based on the expected data rates (per annum).

» ALICE: large part is a disk buffer in the online system, natural GRID evolution should provide the rest.

* Data rates and event sizes vary within a run as much as factor 2.

« EXCLUDES derived data - typically factors more than RAW shown here.

= Data volumes expected to grow dramatically.
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» Assumes ratio of disk to yearly raw data is as currently requested for 201s.
» Assumes flat budget annual growth remains at 15-20%.

» In 2025 cost is at least factor 2-3 above flat budget.
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Scale of challenge: CPU
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» Rough estimates of the CPU resources needed, based on extrapolations.

» Itisclear CPU usage must be improved.
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GRID growth

Running Jobs
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 Number of cores grows by 2% year on year (flat budget).

« Power/core ~constant.

» Storage growth at 20% per year.

Projected at 2020 => ~3-4X the current power (storage and CPU, resp.).
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Networking growth
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Projected volume for Dec 2013: 40.6 PB

Actual volume for Dec 2012: 12.0 PB e
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 Dramatic growth, by example of ESnet.
* Factor 10 every 4.3 years.

» Could mean less data replication where appropriate (on demand data copy)?
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Costs

Assuming similar computing models as today:
* Networks:
 Technology growth will provide what we need;

* Cost ? Affordable if today’s trends continue.

Archive storage:

» Tape (robotics, drives, media) — cost similar to today for full anticipated HL-
LHC data growth.

» Disk bufter cost will be much higher.

Active storage (data copies, caches, etc):
* Costs factor 2-3 higher than flat budgets.

« CPU:
» Costs factor 3-5 higher than flat budgets.

Biggest impact on overall costs is disk storage.
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ALICE upgrade

» ALICE upgrade basic estimates:
» Event rate soKHz (Pb-Pb), 200KHz (p-p, p-Pb).

» Event size 1.1TB/sec from detector; 20GB/sec average processed and
compressed to storage.

» Triggerless readout - basic data unit a “timeframe” instead of an “event”.

« RAW data rates and volume necessitate the creation of an online-offline
facility (o2) for data compression, incorporating:

» DAQ functionality - detector readout, data transport and event building.

« HLT functionality — data compression, clustering algorithms, tracking
algorithms.

 Offline functionality - calibration, full event processing and
reconstruction, up to analysis objects data.
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The architecture of ALICE Oz
ALICE

Continuous streams of raw data I | |
Readout, chopping, and aggregation ‘1’ ‘l’ ‘1’ . . « . %)
pattern recognition and calibration synchronous with data taking - “online

Local data compression

Compressed Sub-Timeframes

Data aggregation Y V
Synchronous global reconstruction,
calibration and data volume reduction

Compressed Timeframes

Transient ﬁ Internal O2 data buffer @P2

Data storage

Asynchronous and refined calibration, A 4
reconstruction and data volume reduction
Quality control - Event building

Fully Compressed Timeframes

e — ﬁi Calibration refinement @P2

Data storage

Data archival é Custodial storage at To/T1

« TDR: summer of 201s.
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ALICE O> data reduction plans %

‘Offline quality’ calibration critical for the data compression. ALICE

+ Compressed data allows reprocessing, i.e. finer-grain calibration is still

possible (to a degree).
Use of FPGAs, GPUs and CPUs in combination;

» Software uses specific advantages of each.

» A well-tested approach in production (current HLT).

New framework to incorporate all tasks;

» ALFA (ALICE-FAIR) being developed in collaboration with the FAIR
collaboration at GSI Darmstadt.

* Modular message based software framework

» Very scalable, components communicate using a universal data/
message transport (see Graeme’s talk).

» Run 2is a test bed for many ideas, e.g. online calibration using the HLT.
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ATLAS: current status ', AlILA 5
A EXPERIMEN

Currently commissioning new data placement and production system.

« Typical lifetime > § years or so
expect new systems not before ~Run 4;

* Run 2 & Run 3 similar in requirements for both only HL-LHC changes
picture dramatically.

* Need to learn from new system as well as need to know new requirements,

* e.g. how to deal with accelerators; whole nodes scheduling should help.

Future HW/SW technologies changes might offer completely new solutions.

Work on optimising/modularising the software ongoing, e.g.:

* dedicated EventServer for I/O running on same/different machine (enforcing all
10 goes through the framework ...).

* More speculative:
offload CPU intensive tasks to accelerators including parts of reconstruction
(mostly tracking), file (de-) compression (on smallish GPUs/FPGAs!), Geant4
simulation, ideally these accelerators run on same or some other machine (incl.
additional CPU cores for e.g. 'big. LITTLE' architectures).
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ATLAS: disk usage WAILAS

) EXPERIMENT

Problem in Run 1: tuples often 1:1 copy of AODs (root readable); removing
duplicated copies frees disk space for important new data -> one of main
reasons for xAOD and new analysis framework.

Resources will be even tighter with higher lumi/EF output rate -> need
much more MC (2/s billion planned for Run 2 for full/fast sim - how much
is needed for Run 3 /4 ?).

* Need to rethink what to store in XxAOD files, and take a hit on what can
be done with it ... (‘redundant’ information in AODs in Run 1 was used to
apply some important fixes).

Another application for fast reco/fast sim:

» events directly to user ntuple to avoid storing large intermediate files
never being looked at again.
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" CATLAS
Run-4 (with 2014 performances)

ATLAS resource needs at T1s & T2s
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B2).... Extrapolation from 2014 (Moore law )

» Need to worry about disk and CPU usage for HL-LHC as well as access to disk
(I0 and capacity!).
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« CMSis planning for s-7.skHz of data in Run 4. In this scenario CMS would

CMS: resource needs

collect 2§B-37B raw events per year.

« Estimating from the current software and using the upgrade simulation:
events is more complicated to reconstruct and larger than the events we will collect in

2015.
Pile-up Reconstruction time AQOD size HLT output
Detector | (Ave./crossing) (Ratio to Run 2) (Ratio to Run 2) | rate (kHz) Total
Phase 1 50 - 1.4 1 3
Phase-II 140 20 3.7 5 65
Phase-II 200 45 54 7.5 200

tasks: computing challenge is 65-200 times worse than Run 2.

Scale of computing resource needs
relative to Run 2 including the increase
in projected HLT output rate

« Factoring in the trigger rate and taking a weighed average of the data and simulation

« Anticipating a factor of 8 in CPU improvements and a factor of 2 in code
improvement: deficit of a factor of 3-1s.

* Anticipating a factor 6 in storage improvements and having by Phase IT events 4-5
times larger: deficit of 4-5 in storage.
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CMS: targets =%

» Roughly 40% of the CMS processing capacity is devoted to task identified as
reconstruction.

 Prompt reconstruction, re-reconstruction, data and simulation reco.

 Improving the number of events that can be reconstructed per computing
unit per Swiss Franc is the single biggest savings.

+ ~20% of the offline computing capacity is in areas identified as selection and
reduction.

* Analysis selection, skimming, production of reduced user formats.

 The remaining 40% is a mix.
* Lot of different activities with no single area to concentrate optimisation effort.
+ Simulation already has a strong ongoing optimisation effort.
» User analysis activities developed by many people.

* Smaller scale calibration and monitoring activities.
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CMS: overview — X

« CMS is investigating ways to reduce the amount of computing spent on data
reduction.

- Event tags and catalogs can improve the selection speed and efliciency.

* Big Data tools like Map Reduce can make scalable IO and reuse the
selection criteria.

« CMS would like to investigate the scale of improvement in the cost per
capacity of using specialised centres for dedicated workflows like
reconstruction and event selection.

» If'this is the most eflicient way of working, it could be a significant
change in how computing services are supported and provisioned.

* Not all services and capabilities will be at all sites.
» It would introduce a more heterogeneous and complex system.

» From an operations perspective and from a support and funding
perspective.
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Towards the LHCb Upgrade IL.H
u

* No revolution planned for the LHCb computing upgrade (Run 3).

 Rather an evolution to fit in the following boundary conditions:
* Luminosity levelling at 2 - 10%
e Factor s c.f. Run 2
+ 100kHz HLT output rate for full physics programme

e Factor 8-10 more than in Run 2

 Flat funding for offline computing resources

« Computing milestones for the LHCb upgrade:
« TDR:2017Q1
» Computing model: 2018Q3

* Therefore only brainstorming at this stage, to devise model that keeps within
boundary conditions
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LHCDb: brainstorming for Run 3 %

In Run 2, Online (HLT) reconstruction will be very similar to offline (same code, same
calibration, fewer tracks).

- Ifit can be made identical, why then write RAW data out of HLT, rather than
Reconstruction output?

In Run 2 LHCb will record 2.s kHz of “TurboDST”.
« RAW data plus result of HLT reconstruction and HLT selection.

+ Equivalent to a microDST (MDST) from the offline stripping.

* Proof of concept: can a complete physics analysis be done based on a MDST
produced in the HLT?

« No offline reconstruction.

* No offline realignment, reduced opportunity for PID recalibration.
« RAW data remains available as a safety net.

« Ifsuccessful, can RAW data be dropped?
« HLT then writes out ONLY the MDST.

Currently just ideas, but would allow a 1ookHz HLT output rate without an order of
magnitude more computing resources.
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[LHCDb: simulation

« LHCDb offline CPU usage is dominated by simulation ( >60% of CPU already in 2016).
« Many measurements start to be limited by simulation statistics.
« Simulation suited for execution on heterogeneous resources.
* Pursue efforts to interface Dirac framework to multiple computing platforms.
« Allow opportunistic and scheduled use of new facilities.
 Extend use of HLT farm during LHC stops.
« Several approaches to reduce CPU time per event.

» Code optimisation, vectorisation etc.

» Contribute to and benefit from community wide activities, e.g. for faster transport.

« Fast simulations.
* Not appropriate for many detailed studies for LHCb precision measurements.
* Nevertheless many generator level studies are possible.

+ Hybrid approach.
» Full simulation for signal candidates only.
« Fast techniques for the rest.

» e.g. skip calorimeter simulation for out of time pileup.
* Avoid being limited by disk space.
 Deploy MDST format also for simulated data.
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What do we need to do?

>60% grid usage is MC.
» Speedup existing frameworks.

» Fast (parametrised) MC.

» Optimize storage format.

External HPC facilities (Titan, Mira), typically ran at ~9o% efficiency.
» for Titan it means ~300M core hours per year.

» Frameworks to utilise this efficiently (e.g. PanDA).

Use clouds for more optimised workflows.

Mind IO performance on active storage for analysis.

Rethink the data storage strategies?
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Technology evolution
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* Clock speed, power (per socket), performance per clock - flat since ~2006.
» Issue: power dissipation/distribution.

» Number of transistors still growing exponentially (more cores added).

» Memory wall - see Graeme’s talk.

» Disk capacity to performance ratio.
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Silicon utilisation

» CPU: only part of silicon used for ALUs.

» Trend to utilise more area, e.g. in
accelerator boards (GPUs, etc...).

» Power dissipation (and distribution)
problem also here.

e Dark Silicon.

......
||||||
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Life in a multi-core landscape

» Shift data processing paradigm to utilise the silicon more efficiently.
» Use heterogeneous systems: CPU+specialised coprocessors (FPGA+GPU).
» Adapt code where appropriate to use coprocessors.
*  Multi-core utilisation.
» Possible memory issues?
 Multi-threading to relieve part of memory strain.
» Code optimisations:

» e.g. vectorised code.

(see Graeme’s talk)
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Industry trends

Global Market Share of Personal Computing Platforms by Operating System Shipments, 1975 - 2012E
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In the past: scientific computing dominated by specialised architectures.

Industry “settled” on x86 at some point.

«  We followed suit - standardised on Intel/Linux - commodity hardware/software.

Market trends nowadays: other architectures emerge.

Big players (Google, Facebook, ...) do Big Data differently (few specialised HPC farms, etc.)

* Synergy between architectures: mobile end (e.g. ARM) and big server backend (e.g. Xeon).

FIAS Frankfurt Institute
for Advanced Studies

Have to rethink again?
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Summary

» Resource needs large.

» Technology evolution alone will not close the gap.
» Efforts on the way or already undertaken.

 Storage.

« CPU.

 Large online farms for data compression or online triggering planned.

» Usage for offline duty, simulation, etc.
« We need to investigate also other resources.
» Spare cycles of BIG computing centres.

» Keep an eye out for new hardware developments...
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