

ISOLDE and n_TOF Consolidation

Richard Catherall
ISOLDE Technical Coordinator
EN-STI
Chamonix 2014 workshop

199192

Introduction

- Consolidation driven by the following criteria:
 - Operation and performance of the facility
 - Aging
 - Radiation damage, corrosion, mechanical failures
 - Difficulty to repair due to high dose rates and contamination
 - Safety
 - Radiation protection

- Issues identified and addressed in HIE-ISOLDE Design Study
 - Arrival of Linac 4 and a potential increase in p-beam intensity
 - 2 GeV upgrade of Booster ISOLDE?

Introduction

Magnets Vacuum High voltage CV controls Safety

Frontends

- Both Frontends should be replaced during LS2
- Frontend lifetime: 6 8 years
 - HRS operational since March 2010
 - GPS since March 2011
- A failure of one Frontend during the operational period will reduce the physics program by 50%
- Construction of 1 spare on-line Frontend
- Take advantage of replacement to develop a new generation of Frontends requiring a minimum number of interventions
 - E.g. Modify extraction electrode system

Vacuum TE-VSC

- Replace first beam line chamber
- Extension of exhaust gas containment
 - Addition of a third tank
 - ISOLDE pumping is stopped when the tanks are full
 - Not always possible to release gases due to a lack of decay time
- Replace beam line turbo pumps

ISOLDE Beam Dumps

- Replace/modify the ISOLDE beam dumps
 - At the limit of operation in terms of thermal and compressive stresses
 - Simulations done on assumed properties show that limits are exceeded for certain p-beam conditions
 - A failure of the beam dump would stop the ISOLDE physics program for >12months
 - Prevent any increase in p-beam intensity and energy
- Should be replaced/modified during the LS2 period
 - 2 options considered

ISOLDE Beam Dumps Option 1

• Insert a PSB like water-cooled beam dump in front of existing beam dumps.

- Advantages:
 - Cheaper option
 - Based on known design
 - "easier" access
- Disadvantages
 - Implementation and maintenance of a cooling system
 - Activated water
 - Contribution to target area air activation and consequent release to atmosphere.
 - High dose rate for installation

ISOLDE Beam Dumps Option 2

- Replace existing beam dumps
- Advantages
 - Low dose rate for installation
 - Take advantage to improve shielding (see next slides)
 - Reduction in air activation through new design
- Disadvantages
 - Removal, storage and replacement of ~3500m³ of earth, about half of which is activated.
 - Handling and storage of radioactive beam dump
 - Still require cooling and its associated disadvantages

Shielding

- Further shielding required to attenuate dose rates observed during operation and under certain conditions:
 - 2uA of p-beam on thick ISOLDE targets (>50gcm-2)
 - Identified by RP in https://edms.cern.ch/document/1142606/1 CERN-DGS-2010-006-RP-SN
 - Impact of p-beam intensity and energy increase on radiation dose rates outside the CERN perimeter to be assessed
- Can be combined with an upgrade of the ISOLDE beam dumps
- Requires major excavation work of activated earth

Shielding

199192

Off-line Separator

- Construction of a dedicated off-line separator in the Class A laboratories
- Prior to 2005 and the commissioning of the Class A laboratories at the ISOLDE Facility, all targets (non-actinide and actinide (UC₂-C)) underwent off-line testing in the ISOLDE laboratories in building 3 prior to operation on-line.
 - Target characterization, stable beam mass scans, ionization efficiency measurements..etc
- Since 2005
 - All radioactive source handling (including actinide target preparation) is done in the Class A laboratories.
 - To avoid cross contamination, only non-actinide targets continue to be tested in building 3
 - A second dedicated off-line separator is required in the Class A laboratories for the testing of actinic to the second dedicated off-line separator is required in the Class A laboratories for the testing of actinic to the second dedicated off-line separator is required in the Class A laboratories for the testing of actinic to the second dedicated off-line separator is required in the Class A laboratories for the testing of actinic to the second dedicated off-line separator is required in the Class A laboratories for the testing of actinic to the second dedicated off-line separator is required in the Class A laboratories for the testing of actinic to the second dedicated off-line separator is required in the Class A laboratories for the testing of actinic to the second dedicated off-line separator is required in the Class A laboratories for the second dedicated off-line separator is required in the Class A laboratories for the second dedicated off-line separator is required in the Class A laboratories for the second dedicated off-line separator is required in the Class A laboratories for the second dedicated off-line separator is required in the Class A laboratories for the second dedicated off-line separator is required in the class A laboratories for the second dedicated off-line separatories for the secon
- The risk is run
 - 2 wee
- Spin off: 0
 - ⁷Be co

REX-ISOLDE

- The low energy part of REX cools, bunches and ionizes to a multi-charged state the singly-charged ion beams from ISOLDE before injecting into the REX-Linac
- REX-ISOLDE provides ~ 200 x 8 hour shifts per year of physics to the ISOLDE community
- Consolidation implies replacement of critical components for the REXTRAP and REXEBIS
 - Request 300kCHF over a period of 3 years
 - 2016-2017-2018
 - May be integrated into a project to replace with an upgraded REXEBIS

RILIS

- RILIS is the Resonance Ionization Laser Ion Source, used to improve the selectivity of the ion sources in ISOLDE.
- 70% of the beams in ISOLDE are produced using RILIS.
- Nd:YAG lasers have limited lifetime, and need to be replaced after about 15000 hour of operation (say, every 5 years).
- We already see signs of degradation (output power reduced) of the YAG lasers (bought in 2007/2008), so it is time to replace them.

Impact of laser failure on 100111 operation

- Spare lasers are used to replace faulty units
 - ~ 2 failures per operation year, tending to increase with the age of lasers
 - Spare units are becoming old, performance degrading Cost of repair is high as the warranty has expired
- More RILIS beams are available after LS1
 - More requests for RILIS from ISOLDE users
 - Duration of runs will increase

Budget request for consolidation of RILIS lasers

Request 2013

Laser model	Application	Year of purchase	Number	Estimated price/unit, kCHF
Lumera Blaze 532-40-HE	Highly efficient non- resonant ionization	2014	1	110
EdgeWave Innoslab CX16III-OE + warranty extension	Pumping of dye lasers and non-resonant ionization	2015	1	220
Photonics DM60 or similar	Pumping of TiSa lasers	2015	1	75

Spending profile - was not approved

Status / kCHF	2014	2015	Total
requested	110	295	405

Current status of RILIS consolidation

- Lumera laser

 purchased in 2014
 - Funding gathered from other sources:
 - Marie Curie ITN CATHI (50%) + STI operation (50%)
- Photonics laser price increased to 105 kCHF
- Updated budget request

Status / kCHF	2014	2015	Total
requested		325	325

RILIS lasers require a recurrent consolidation every 5 years ~ 435 kCHF in 2020

ISOLDE Magnets

- Supply of spare magnets and coils for both ISOLDE and REX ISOLDE
- Any failure of the magnets would result in considerable down time of the machine
 - During operation the repair of 1 separator magnet would stop all operation due to access restrictions

			How much	
SLOT	DESIGN	What?	(kCHF)	Comments?
GPS.MAG70	<u>PXMDSEAHWC</u>	Spare coils	100	Any repair would currently need to be made insitu as there is no provision to remove the magnets from the line, considerable down time still expected!
HRS.MAG60	PXMDSFACWC	Spare coils	100	Any repair would currently need to be made insitu as there is no provision to remove the magnets from the line, considerable down time still expected!
HRS.MAG90	PXMDSGACWC	Spare coils	100	Any repair would currently need to be made insitu as there is no provision to remove the magnets from the line, considerable down time still expected!
XSEP.MD100	PXMBXCAHWC	Spare magnet	120	Considering solid yoke construction a new magnet would be recommended
MQT1 + MQT2	PXMQTACFWC & PXMQTADFWC	Spare magnets	60	Considering solid yoke construction a new magnet would be recommended
мотз	Not in Database	Spare magnets	100	Design makes coil replacement difficult, considerable down time expected!
MQT4 + MQT5.2	PXMQTABFWC & PXMQTAEFWC & PXMQTAEFWC & PXMQTAFFWC	Spare magnets	60	Considering solid yoke construction a new magnet would be recommended
			640	+ 160 (2 FTE) = 800 KCHF

High Voltage

- Replace the four 60kV Astec power supplies.
- Independent of the new modulator development within the HIE-Design Study
- Present Astecs nearing the end of life and failure rates may become unacceptable between now and the installation of the new modulator (circa 2018?).
- The Market Survey is nearing completion and with tender planned for next year.
- Allocated expenditure of 93kCHF in 2015 and 100kCHF in 2016.

- Modification of the ventilation controls for the original ISOLDE Facility after separation of the Class A laboratories
 - Tunnel, HT room, control room and "old" hall
- Should be synchronised with the coupling of the MEDICIS ventilation with the Class A labs
 - Shutdown 2014/2015?
- Requires modification of an old and obsolete ventilation control system

Safety (First)

- Request 120kCHF/year in order to cope with ALARA and planned interventions in sensitive areas.
 - Assistance and follow-up of interventions.
- Preparation of risk analysis associated with operation and intervention.

Consolidation Expenditure Request

WU/kCHF	2015	2016	2017	2018	2019	2020	Groups
Frontends x2 Spare Frontend		300	300		50	300	EN-STI-RBS BE-BI TE-VSC
Beam dumps O1 O2				1000 ?	?		EN-STI-TCD GS-SE? DGS-RP
Shielding				?	?		GS-SE DGS-RP
Off-line	400	400					EN-STI-RBS
REX		100	100	100			BE-ABP
RILIS	325					400	EN-STI-LP
Magnets	200	300	300				TE-MSC
Vacuum		70	60	160	60	60	TE-VSC
High Voltage	93	100					TE-ABT-EC
CV controls	?						EN-CV
Safety	120	120	120	120	120	120	EN-STI

Approved ISOLDE Consolidation Budget

WU kCHF	2014	2015	2016	2017	2018
IS Consolidation	224	115	220	220	220

- Used for small operational consolidation
- Pumps
- Test stands
- Cables
- Auxiliary equipment

Risk Register

WU Name	Probability of Failure (P)		Impact on reputation (Ir)	Financial Impact of failure (If)	Safety Impact (Is)	Risk Score
Frontend and first stage beam line	4	4	3	2	1	16
Beam dumps	3	5	3	2	1	15
Shielding	1	4	2	3	4	4
Class A off-line separator	4	2	2	1	1	8
REXEBIS and REXTRAP	3	4	3	1	1	12
RILIS	3	4	3	2	1	12
Ventilation controls	3	4	3	2	1	12
HT	3	4	3	1	1	12
magnets	2	5	3	2	1	10
vacuum	2	2	1	1	1	4

Marco Calviani Chamonix 2014 workshop

N_TOF CONSOLIDATION REQUESTS

n_TOF facility milestone

- 1998-2001: preparation and commissioning
- 2002-2004: phase I data taking (target #1)
- 2005-2007: spallation target upgrade
- 2008: first proton on target #2
- 2009-2012: **phase II** data taking (target #2)
- 2010: EAR1 upgrade and borated water moderator
- From 2014: phase III data taking (target #2) and EAR2 operation

n_TOF target evolution

- $\overline{2000-2004}$ target #1
 - Solid lead target in a water bath
 - Operation stopped due to leakage of spallation products in the cooling water

Damaged and oxidized target #1

n_TOF target evolution

■ 2008-now → target #2

Monolithic water-cooled Pb target in pressurized vessel

Optimized target with separated cooling/moderator

loops

Fully controlled water chemistry

Target #2 lifetime

- Lifetime of target #2 critical parts estimated to be ~10 years, based on dedicated corrosion tests
 - Repair not possible (due to design and high expected dose rate O(100 mSv/h))
- Risks if exchange not performed during LS2:
 - 1. Spill of highly radioactive water in the target pit
 - Increased contamination of the water loop
 - 3. Long physics stop if failure occurs between LS2 and LS3

Beam impact spot

n_TOF target #2 inspection

- External inspection performed in April 2014
- Surface oxidation stains have been observed, due to humid atmosphere
- Similar/worse expected inside the loop

Target proton window (AW 5083)

n TOF consolidation for Chamonix 2014

Consolidation needs

- Design and construction of a new neutron spallation target (#3)
 - 1.3MCHF
- 2. Dismantling of the target #1 cooling station (in FTN tunnel)
 - 2018 (200kCHF)
- Consolidation of EAR1 sweeping magnet power supply
 - 2017 2018 (200kCHF over 2 years)

WU Name	Probability of Failure (P)	Impact on Scientific Objectives (Ip)	•	Financial Impact of failure (If)	Safety Impact (Is)	Risk Score (Rs)
n_TOF spallation target exchange	2	5	3	3	1	10
target #1 cooling station removal	1	1	2	N/A	3	3
Sweeping magnet power supply consolidation	3	2	2	1	1	6

Target failure can jeopardize >1 year of physics

N_TOF consolidation requests

Request / kCHF	2014	2015	2016	2017	2018	Total
Design and construction of a new						
neutron spallation target	0	250	500	350	200	1300
Dismantling of the target #1 cooling						
station	0	0	0	0	200	200
Consolidation of EAR1 sweeping magnet						
power supply	0	0	0	100	100	200
Total/year	0	250	500	450	500	1700

For the target replacement please refer to EDMS document 1310619

- Acknowledgements
 - Marco Calviani
 - Valentine Fedosseev
 - Fredrik Wenander
 - Richard Scrivens
 - Stefano Marzari
 - Antony Newborough
 - Tony Fowler
 - Jose Antonio Ferreira Somoza
 - Serge Deleval
 - Alexander Dorsival
 - Roberto Losito

Thank you for your attention