Winter school on Physics with Trapped Charged Particles

Contribution ID: 30 Type: not specified

Enhancing the control over the ion energy in a hybrid atom-ion experiment

We investigate the interaction of a laser-cooled trapped ion (138 Ba $^+$, 87 Rb $^+$ or 87 Rb $^+$) with an ultra-cold cloud of optically confined 87 Rb atoms. The ion is held in a linear Paul trap and is immersed in the center of the cold atomic cloud.

By controlling a set of parameters, like changing the micromotion energy, we can manipulate the atom-ion collisions and investigate elastic and inelastic collision phenomena. Using the cold atom gas we can achieve sympathetic cooling of the 138 Ba $^+$ to sub-Doppler temperatures (sub mK).

To be able to measure the energy after collisions precisely we are setting up a resolved sideband system for the $^{138}\mathrm{Ba}^+$ ion which I will present.

Another project is to implement a dipole trap at 493 nm for the ¹³⁸Ba⁺ ion and to switch off the Paul trap during the atom ion interaction in order to remove the micromotion completely.

Primary author: Mr WOLF, Joschka (Institut für Quantenmaterie, Universität Ulm)

Co-authors: Mr MAHDIAN, Amir (Institut für Quantenmaterie, Universität Ulm); Mr MOHAMMADI, Amir (Institut für Quantenmaterie, Universität Ulm); Mr KRÜKOW, Artjom (Institut für Quantenmaterie, Universität Ulm); Prof. HECKER DENSCHLAG, Johannes (Institut für Quantenmaterie, Universität Ulm)

Presenter: Mr WOLF, Joschka (Institut für Quantenmaterie, Universität Ulm)