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Autoresonance 

• Autoresonance is a method of exciting lightly damped nonlinear oscillators. 
• It has been used or proposed for use in many different systems, including: 

• Antihydrogen synthesis by the ALPHA collaboration (axial autoresonance.) 
• Antihydrogen synthesis by the AEGIS collaboration (radial autoresonance.) 
• Massive positron storage (UCSD.) 

Thanks to Eric Gilson and Lazar Friedland 



Driven Harmonic Oscillator 
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Driven Harmonic Oscillator Equation: 

Solution: 
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Detuning 



Driven Pendulum 
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Driven Pendulum Equation: 



Animation: Lucas Barbosa, Wikipedia 

Nonlinear Pendulum Period 
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0 is the maximum angle 

Exact answer involves a complete elliptic 
integral of the first kind. 



Duffing Equation 
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Pendulum Equation: 
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Duffing Equation: 
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Detuned Constant Frequency Drive: Analytic Amplitude 
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What is the resulting amplitude? 
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Assume: 
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and use the detuning: 

𝜃𝑚 is the maximum amplitude. 

Cubic equation for the maximum amplitude 𝜃𝑚 . 



Detuned Constant Frequency Drive: Analytic Amplitude 

Duffing Equation: 
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Detuned Constant Frequency Drive: Numeric Amplitude 
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Beating between homogeneous 
and driven modes 

𝜃𝑚 

𝛥𝜔 



Detuned Constant Frequency Drive: Numeric Amplitude 

Add a bit of damping 



Detuned Constant Frequency Drive: 
Comparison of the Analytic and Numeric Amplitudes 

Numeric Simulation 
points 

𝜃𝑚 

𝛥𝜔 



Autoresonance 
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Autoresonance 

Actual Response 

Calculated Response 

Time = Frequency Detuning 



Autoresonance is a general property of driven, nonlinear, high-Q oscillating systems. 
 
A nonlinear oscillator will, under some circumstances, automatically adjust its 
amplitude so that it nonlinear frequency matches its drive frequency. 
 

J. Fajans, E. Gilson and L. Friedland, Autoresonant (nonstationary) excitation of the diocotron mode in non-neutral plasmas, Phys. Rev. Lett. 82:4444, 1999.  

Autoresonance 



Autoresonance: Environment Change 



Autoresonance is a general property of driven, nonlinear, high-Q oscillating systems. 
 
A nonlinear oscillator will, under some circumstances, automatically adjust its 
amplitude so that it nonlinear frequency matches its drive frequency. 
 
Autoresonance is an extension of the principle of phase stability in accelerators 
discovered by McMillian and Veksler. 
 
Has been observed in a wide range of dynamical systems: 
    Plasmas, Pendulums, Plutinos, Nonlinear Waves, Fluid Dynamics, Josephson 
Junctions, Mass Spectrometers, Optics, Positron Storage, Antihydrogen.  
 

J. Fajans, E. Gilson and L. Friedland, Autoresonant (nonstationary) excitation of the diocotron mode in non-neutral plasmas, Phys. Rev. Lett. 82:4444, 1999.  
E.M. McMillan. The synchotron—A proposed high energy particle accelerator, Physical Review 68 143 (1945). 

Autoresonance 



Diocotron Wave 
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Duffing Equation: 
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Diocotron Frequency 

Tutorial Problem: Derive this formula. 



Autoresonant Excitation of the Diocotron: 
Upward Frequency Sweep 

J. Fajans, E. Gilson and L. Friedland, Autoresonant (nonstationary) excitation of the diocotron mode in non-neutral plasmas, Phys. Rev. Lett. 82 4444, 1999. 
J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  

Upward sweeping frequency 

Above Linear Resonance 

Below Linear Resonance 



Autoresonant Excitation of the Diocotron: 
Sawtooth Frequency Sweep 

J. Fajans, E. Gilson and L. Friedland, Autoresonant (nonstationary) excitation of the diocotron mode in non-neutral plasmas, Phys. Rev. Lett. 82 4444, 1999. 
J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  

Sawtooth frequency 

Above Linear Resonance 

Below Linear Resonance 



Autoresonant Excitation of the Diocotron: 
Constant Frequency Drive with Evolution of the Linear Frequency 

J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  

Downward sweeping 
linear frequency 



Axial Antiproton Excitation in a Penning-Malmberg Trap  
Antiproton well Positron well 

 G.B. Andresen, et al (ALPHA), Autoresonant excitation of antiproton plasmas, Phys. Rev. Lett., 106 025002, 2011. 

Linear 
Resonant 

Frequency 



Axial Antiproton Excitation in a Penning-Malmberg Trap  

 G.B. Andresen, et al (ALPHA), Autoresonant excitation of antiproton plasmas, Phys. Rev. Lett., 106 025002, 2011. 

A
n

ti
p

ro
to

n
 E

n
er

gy
 

Drive Frequency Antiproton 
Distribution 

Function 



Autoresonance 

Will autoresonance always occur? 

0.015 Strong drive 0.005 Weak drive 



Autoresonant Threshold 

 J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  

100% 

94% 

124% 
215% 



Autoresonance Threshold 

Diocotron Mode Axial Antiproton Excitation 

 J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  
G.B. Andresen, et al (ALPHA), Autoresonant excitation of antiproton plasmas, Phys. Rev. Lett., 106 025002, 2011. 
I. Barth, L. Friedland, E. Sarid, and A. G. Shagalov, Autoresonant Transition in the Presence of Noise and Self-Fields, Phys. Rev. Lett., 103, 155001 (2009). 



Sweep (Chirp) Rate 

For simplicity, assume that the drive frequency is changing linearly. 

  0D t t   



Autoresonance Threshold 

 J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  
G.B. Andresen, et al (ALPHA), Autoresonant excitation of antiproton plasmas, Phys. Rev. Lett., 106 025002, 2011. 
I. Barth, L. Friedland, E. Sarid, and A. G. Shagalov, Autoresonant Transition in the Presence of Noise and Self-Fields, Phys. Rev. Lett., 103, 155001 (2009). 

Diocotron Mode Axial Antiproton Excitation 
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For autoresonance to occur: 



Autoresonance Regimes 

J. Fajans and L. Friedland, Autoresonant (non stationary) excitation of a pendulum, Plutinos, plasmas and other nonlinear oscillators.   Am. J. Phys., 69 1096, 2001. 

Early time, linear regime 

Intermediate time, weakly 
nonlinear regime 

Late time, strongly 
nonlinear regime 



Linear Regime 

Duffing Equation with a swept drive: 
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Simple harmonic oscillator with a swept drive: 
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Exact solution was derived by Lewis in terms of Fresnel sine and cosine functions. 

F. M. Lewis, Vibration during acceleration through a critical speed Trans. ASME 54 253 1932. 



Linear Regime: Phase Locking 
• For autoresonance to occur, the oscillator phase must be locked to the drive phase. 

• If the oscillator and drive are not locked, beating will occur. 
 

• When the drive is first turned on at 𝑡 = −𝑡0, are the drive and phase locked? 
• The driven, inhomogeneous response at 𝜔 = 𝜔0 − 𝛼𝑡0 is in phase with the drive. 
• To match initial conditions, there is a homogenous response at 𝜔 = 𝜔0. 

 
• The amplitudes of this response are approximately equal, and proportional to 
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• Consequently, the net response beats and is not locked to the drive. 



Linear Regime: Phase Locking 

• As the drive sweeps towards the resonant frequency, the driven mode amplitude 

continuous to scale as 
1

Δ𝜔
=

1

𝛼𝑡
 , and as Δ𝜔 is getting smaller and smaller, the 

amplitude gets larger and larger. 
 

• The homogenous mode amplitude remains fixed. 
 

• Consequently, the driven mode eventually dominates the homogenous mode, and 
the system phase locks.  



Linear Regime: Phase Locking 

• As the drive sweeps towards the resonant frequency, the driven mode amplitude 

continuous to scale as 
1

Δ𝜔
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1

𝛼𝑡0
 , and as Δ𝜔 is getting smaller and smaller, the 

amplitude gets larger and larger. 
 

• The homogenous mode amplitude remains fixed. 
 

• Consequently, the driven mode eventually dominates the homogenous mode, and 
the system phase locks.  

 J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  
 



Linear Regime: Phase Locking 

 J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  

Experimental 
Phase Locking 



Weakly Nonlinear Regime: Action-Angle Variables 

• Define the action: 
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• The action is a measure of the maximum amplitude: 
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• Also define the angle Φ to be the phase mismatch between the drive and the 

oscillator angle 𝜃, 𝜃  in phase space coordinates. 

 
• These are natural coordinates to describe this problem. 

• The unperturbed pendulum has constant action and linearly increasing 
phase. 



Weakly Nonlinear Regime: Action-Angle Variables 

At every time, expand the action around the equilibrium action. 

0I I  

This forms a Hamiltonian system in which the oscillator, a pseudoparticle, 
oscillates in a pseudopotential well.  For a pendulum: 
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Weakly Nonlinear Regime: Action-Angle Variables 

Concentrating on the pseudopotential,  
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This is a tilted washboard ( a tilted cosine) as a function of Φ.  The amplitude of the 
ripples in the washboard and the tilt of the washboard are functions of 𝐼0. 

Pseudopotential 

Pseudoparticle 



Weakly Nonlinear Regime: Action-Angle Variables 



Axial Antiproton Excitation 

Weakly Nonlinear Regime: Phase Oscillations 

Experimental 
Pseudoparticle 
Phase Oscillations 

Diocotron 

 J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  
G.B. Andresen, et al (ALPHA), Autoresonant excitation of antiproton plasmas, Phys. Rev. Lett., 106 025002, 2011. 



Weakly Nonlinear Regime: Action-Angle Variables 

From the condition that the pseudoparticle remains trapped in the pseudopotential, 
we can derive the condition that 

3 4 

The drive strength must increase as the sweep rate is increased for autoresonance 
to occur. 

Above critical Below critical 



Commitment to Autoresonance 

 J. Fajans, E. Gilson and L. Friedland. Autoresonant excitation of a collective nonlinear mode, Phys. Plasmas, 6 4497, 1999.  

Commitment 



Strongly Nonlinear Regime: Phase Oscillations 

Nothing much happens…the drive strength can even be decreased. 



J. Fajans, E. Gilson and L. Friedland, The effect of damping on autoresonant (nonstationary) excitation. Phys. Plasmas, 8 423, 2001. 
L. Friedland, J. Fajans, and E. Gilson, Subharmonic autoresonance of the diocotron mode.  Phys. Plasmas, 7 1712, 2000. 
J. Fajans, E. Gilson and L. Friedland, Second harmonic autoresonant control of the l=1 diocotron mode in pure-electron plasmas.  Phys. Rev E, 62 4131, 2000. 
 

Autoresonance still occurs in: 
• Lightly damped systems. 
• Systems driven at sub and super harmonics. 
• Systems which do not reduce to the Duffing equation. 
• Since 2000, there have been over 1000 papers with “autoresonce” in their titles. 

Autoresonant Reach 



J.R. Danielson, T.R. Wever, and C. M. Surko, Plasma manipulation techniques for positron storage in a multicell trap, Phys. Plasmas, 13 123502 (2006). 

High Positron Number Trap 



J.R. Danielson, T.R. Wever, and C. M. Surko, Plasma manipulation techniques for positron storage in a multicell trap, Phys. Plasmas, 13 123502 (2006). 

High N Positron Trap: Autoresonant Diocotron Parking 



Abstract: We observe a sharp threshold for dynamic phase locking in a high-Q transmission line resonator embedded 
with a Josephson tunnel junction, and driven with a purely ac, chirped microwave signal. When the drive amplitude is 
below a critical value, which depends on the chirp rate and is sensitive to the junction critical current I0, the resonator is 
only excited near its linear resonance frequency. For a larger amplitude, the resonator phase locks to the chirped drive 
and its amplitude grows until a deterministic maximum is reached. Near threshold, the oscillator evolves smoothly in 
one of two diverging trajectories, providing a way to discriminate small changes in I0 with a nonswitching detector, with 
potential applications in quantum state measurement. 

O. Naaman, J. Aumentado, L. Friedland, J.S. Wurtele, and I. Siddiqi, Phase-locking transition in a chirped superconducting Josephson resonator, PRL 101 117005 (2008).  

Autoresonant Threshold in a Josephson Junction 
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Plutinos 

• Neptune and Pluto are locked together in a 3:2 
resonance. 
• About 1 3  of the presently measured Kuiper 

Belt objects (KBO) are similarly locked. 
• Such locked KBOs are called Plutinos. 

 
• Very few KBOs are locked to Neptune with a 2:1 

resonance.  
                              Why?   
 

• The locking is thought to occur during an early 
period in the solar system evolution during which 
time Neptune was migrating outward.  
• This migration is the equivalent of a “sweep” 

in an autoresonant process. 
• Remember that a nonlinear system will 

respond to any change in its environment. 

L. Friedland, Migration time scale thresholds for resonant capture in the Plutino problem, Astrophys. J. 547  L75–L79  2001. 



Plutinos 

• As with any autoresonant process, there is a 
critical drive strength associated with the sweep 
rate: 

  𝜖 = 𝐶𝛼3 4  
• The proportionality constant is different for 

3:2 locking and 2:1 locking…𝐶 is smaller for 
the 3:2 locking. 

• This makes 3:2 locking “easier” than 2:1 
locking. 

 
• The observation that Plutinos are only locked at 

3:2, not at 2:1 suggests that the “sweep” rate, i.e. 
Neptune’s evolution time, was adequate for 3:2 
locking, but too fast for 2:1 locking. 
 

• This implies that the evolution took between two 
million and twenty million years. 
 
• This is the only known limit on this evolution 

time. 
L. Friedland, Migration time scale thresholds for resonant capture in the Plutino problem, Astrophys. J. 547  L75–L79  2001. 



Saturday After Dinner Talk 

At 20:40 Saturday, right here. 

Movies 

Cartoons 

No Math 
Two Dimensional Fluid Motion  

in Non-Neutral Plasmas 


