Chapter 1

Non-laser cooling Techniques

Laurent Hilico

Laboratoire Kastler Brossel, Université d'Evry Val d'Essonne, UPMC-Sorbonne Universités, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75005 Paris, France. laurent.hilico@lkb.upmc.fr

http://www.lkb.upmc.fr

1. Resistive cooling

Problem 1. Resistive cooling: route to thermal equilibrium

The coupling of an oscillating charged particle of mass m and charge q with the two electrodes of a parallel plane capacitor is described by the following mechanical and electrical equations:

$$V(z) = \alpha \frac{z_0 + z}{2z_0} U(t), \tag{1}$$

$$E(z,t) = -\frac{U(t)}{2z_0},\tag{2}$$

$$m\ddot{z} = -m\omega_z^2 z + qE(z),\tag{3}$$

$$U(t) = RI(t) + e(t), \tag{4}$$

$$I(t) = \alpha \frac{q\dot{z}}{2z_0}. (5)$$

 $2z_0$ is the distance between the two electrodes of the trap. z is the position of the charged particle with respect to the center of the trap. ω_z is the oscillation frequency of the ion in the trap. U(t) is the voltage across the two electrodes. V(z) and E(z) are the potential and electric field in the trap. α is a geometrical factor smaller than one. R is the resistance of the resistor. e(t) represents the Johnson-Nyquist noise across the resistor; it is a random function with a zero average value and a symmetrized spectral

2 L. Hilico

noise density (defined for $\omega \geq 0$) given by

$$S_e(\omega) = 4Rk_BT$$
.

(1) Show that the induced current I(t) verifies the electrical circuit model given by

$$L_{\text{eff}}C_{\text{eff}}\ddot{I}(t) + RC_{\text{eff}}\dot{I}(t) + I(t) + C_{\text{eff}}\dot{e}(t) = 0,$$

and give the expression of the effective inductance L_{eff} and capacitance C_{eff} .

- (2) Calculate $L_{\rm eff}$ and $C_{\rm eff}$ for $z_0{=}4$ mm and $^{12}{\rm C}^{5+}$ with $q{=}5q_e,$ $m{=}12{\times}1.67~10^{-27}$ kg and $\omega_z{=}300$ kHz.
- (3) Using the complex impedance formalism, express $\underline{I}(\omega)$ with $\underline{e}(\omega)$, ω , R, L_{eff} and C_{eff} . Show that

$$\label{eq:delta_eq} \underline{\dot{z}}(\omega) = \frac{2z_0 C_{\text{eff}} \omega_z}{q} \frac{j\omega/\omega_z}{1 - (\omega/\omega_z)^2 + \frac{j}{O}\omega/\omega_z},$$

and give the expression of Q.

(4) The Wiener-Kintchine theorem states that the spectral density of a centered random function h(t) is linked to the square modulus of its Fourier transform by $S_h(\omega) = |\underline{h}(\omega)|^2$. The variance is given by

$$\langle h^2 \rangle = \int_0^\infty S_h(\omega) d\omega / 2\pi.$$

Use (3) and the relation between I and \dot{z} to express the variance of the z-velocity distribution.

(5) Show that the z-motion kinetic energy is given by $\langle \frac{m\dot{z}^2}{2} \rangle = \frac{k_BT}{2}$. Reminder: $\int_0^\infty u^2 du/((1-u^2)^2+u^2/Q^2) \approx \pi Q/2$ for large Q.

2. Ion cloud dynamics simulations

Problem 2. Random generator with a Gaussian distribution: Box-Muller method

We consider u and v two uniformly distributed random variables in]0,1] and the random variables defined by $x = \sqrt{-2 \ln u} \cos(2\pi v)$ and $x = \sqrt{-2 \ln u} \cos(2\pi v)$. We show that x and y are independent random variables with a normalized centered Gaussian distribution. To do so, we evaluate the mean value of a function f(x,y), assuming that this mean is finite.

(1) Express the mean value $\langle f \rangle$ of f(x,y) as a double integral on u and v.

- 3
- (2) Use the changes of variable $s = \sqrt{-2 \ln u}$ and $\theta = 2\pi v$ to express $\langle f \rangle$ as a double integral on s and θ .
- (3) Use the change of variable $(s,\theta) \to (x,y)$ to obtain

$$\langle f \rangle = \int_{-\infty}^{\infty} \int_{\infty}^{\infty} e^{-x^2/2} e^{-y^2/2} f(x,y) \frac{dx}{\sqrt{2\pi}} \frac{dy}{\sqrt{2\pi}}$$

and conclude.

(4) Use the uniform random generator of your favorite software (Maple, Mathematica, Octave, ...) or programming language (FORTRAN, C, C++, Cuda, Python, ...) to generate a series of 1000 numbers with a Gaussian distribution of standard deviation σ. Plot the histogram of the x and y values and compare with a Gaussian.