

Low level control for the HIE- ISOLDE High Resolution Separator magnet

Final CATHI Review Meeting, 22-26 September 2014 Mark Butcher, Martino Colciago*, Alessandro Masi

 The research project has been supported by a Marie Curie Early Initial Training Network Fellowship of the European Community's Seventh Programme under contract number (PITN-GA-2010-264330-CATHI)

Introduction

Scope: To upgrade the field control system for the High Resolution Separator (HRS) magnets in order to achieve better performances for HIE-ISOLDE.

Introduction

Scope: To upgrade the field control system for the High Resolution Separator (HRS) magnets in order to achieve better performances for HIE-ISOLDE.

What is the HRS?

Introduction

MISTRAL

Scope: To upgrade the field control system for the High Resolution Separator (HRS) magnets in order to achieve better performances for HIE-ISOLDE.

Two magnets forming one of ISOLDE's two mass separators

What is the HRS?

Robot Contro

HRS Targ

NICOLE

REX-ISOLDI

HRS= High Resolution Separator (90° and 60° magnet)

COLLAPS COMPLIS HV Platform ---- Roor

GPS= General Purpose Separator (70° magnet)

Presentation Overview

- 1) Update pre-LS1 system to the CERN BE/CO standard
- 2) Study of a new control algorithm

Presentation Overview

1) Update pre-LS1 system to the CERN BE/CO standard

2) Study of a new control algorithm

HRS Hardware scheme

The obsolete VME MIL — 1553 bus master card replaced by new PCI MIL —

1553 bus master card

Real time GM classes (*powvrt - hrsmagrt*) replaced by FESA₃ classes

NMR communication protocol (*RS*232) replaced by *GPIB* protocol

Control system update details

- FESA is a CERN-wide framework for equipment-specialists to develop real-time control software
 - The HRSControl FESA3 class
 - + uses the pre-LS1 field control algorithm.
 - + interacts through BE/CO functions with:
 - GUI
 - PowM1553 FESA3 class
 - NMR FESA3 class
- The new Ethernet/GBIP driver allows faster communication with the teslameter.
- The FESA classes are instantiated on Kontron Front End Controller (FEC) industrial computers.

Control system update: new FESA classes

- The new FESA3 classes (NMR and HRS) are developed and instantiated
- Old user attributes remain unchanged
- + New functionalities added:
 - Possibility to check the NMR status words
 - Possibility to reset the NMR by software
 - Possibility to change the device connected (NMR, PowM1553 class) without stopping the class
 - A time stamp and measurement status have been added to the NMR value

nd	HRSControl	
d	PROPERTIES USER/EXPERT + UserSettings + PowMAcquisition + FgcAcquisition + NmrAcquisition	EXPERT ONLY + ExpertSettings + ExpertManControlSetting + PowMExpertSetting + FgcExpertSetting + NmrExpertSettin
tus	METHODS	
re	+ Real_time_action CheckRbacTc	oken
ice		
ss)	NMR	
tus	PROPERTIES USER/EXPERT + fieldMeasure	+ fieldTimestamp EXPERT ONLY
	+ fieldStatus	+ reset
	METHODS + Real_time_action Read + Real_time_action Reset	

Control system update: operational results

Final CATHI Review Meeting, 22-26 September 2014

M. BUTCHER

Presentation Overview

1) Update pre-LS1 system to the CERN BE/CO standard

2) Study of a new control algorithm

New control system: Introduction

New control system: Algorithm

+ Proportional Integral Derivative (PID): feed back controller

Teslameter PT2025

- + Observer: combines measurements with model estimation
- + Feed forward: consists of the a priori knowledge of the system (magnet model)
- + Pre-cycle could no longer be used since the hysteresis model has no memory

New control system: PID controller

AIM: monitor and modify the system process variable to reduce the difference between the desired value u(t) and the system output y(t)

$$i(t) = K_p e(t) + K_i \int e(t) dt + K_d \frac{de(t)}{dt}$$

 $K_p = proportional gain;$ $K_i = integral gain;$ $K_d = differential gain.$

$$u(t) = B_{ref}$$
 and $y(t) = B_{meas}$ by NMR

WHY: estimation of the magnetic field value

- + High frequency magnetic field evaluation
- + Improve precision

WHY: estimation of the magnetic field value

- + High frequency magnetic field evaluation
- + Improve precision

HOW:

- + Use observer to combine:
 - available measurements
 - model field estimates

WHY: estimation of the magnetic field value

- + High frequency magnetic field evaluation
- + Improve precision

HOW:

- + Use observer to combine:
 - available measurements
 - model field estimates
- + Model comprises 2 subsystems:

WHY: estimation of the magnetic field value

- + High frequency magnetic field evaluation
- + Improve precision

HOW:

- + Use observer to combine:
 - available measurements
 - model field estimates
- + Model comprises 2 subsystems:
 - Static: Coleman-Hodgdon hysteresis model (modified Duhem model)

WHY: estimation of the magnetic field value

- + High frequency magnetic field evaluation
- + Improve precision

HOW:

- + Use observer to combine:
 - available measurements
 - model field estimates
- + Model comprises 2 subsystems:
 - Static: Coleman-Hodgdon hysteresis model (modified Duhem model)
 - Dynamic: First order model of the system delay: $G(s) = \frac{k}{1 + \tau s}$ Where: k = system gain $\tau = system time constant$

Dynamic

System model

COLEMAN-HODGDON MODEL

 $\dot{B} = C_{\alpha} \left| \dot{H} \right| [f(H) - B] + \dot{H}g(H)$

- Where: B = magnetic fluxf(H) = odd, monotone increasing, real valued functionH = magnetic fieldg(H) = even, real-valued function
- Ordinary differential equation hysteresis model

 Large variety of hysteresis shapes according to f(H) and g(H)

- + Physical model
- + Unidirectional

+ Counterclockwise

 $B = \hat{B}_{sim} + k * (B_{nmr} - \hat{B}_{sim})$

Rate independent

Soft ferromagnetic model

$$f(H) = \begin{cases} Ca[H + H^*] - bH^* \text{ for } H < -H^* \\ bH & \text{for } H < -H^* \text{ and } H > H^* \\ Ca[H - H^*] + bH^* & \text{for } H > H^* \end{cases}$$
$$g(H) = \begin{cases} u & \text{for } -H^* \le H \le H^* \\ Ca & \text{for } H < -H^* \text{ and } H > H^* \end{cases}$$

Model constraints:

- + $C_{\propto}, C_a, b, u, H^* > 0;$
- + b > u

+
$$b - u < u [1 - e^{-2C_{\alpha}H^*}]$$

$$b - u < C_a \left[1 - e^{-2C_{\alpha}H^*} \right]$$

Observer update according to:

Final CATHI Review Meeting, 22-26 September 2014

New control system: model identification

- + Off-line hysteresis parameter estimation:
 - low frequency signal input to avoid dynamics
 - detection of the parameters from main loop
 - non linear fitting (trust region to respect constraints)

 H^* is the value of the saturation starting point u is the slope value of the hysteresis at H = 0 C_a is the limiting slope for large H

New control system: model identification

- + Off-line hysteresis parameter estimation:
 - low frequency signal input to avoid dynamics
 - detection of the parameters from main loop
 - non linear fitting (trust region to respect constraints)
- + Off-line dynamic parameter estimation
 - high frequency signals

 H^* is the value of the saturation starting point u is the slope value of the hysteresis at H = 0 C_a is the limiting slope for large H

+ WHY: to linearise the system by compensating nonlinearities (hysteresis)

 WHY: to linearise the system by compensating nonlinearities (hysteresis)

+ HOW

• Theory: use model to predict the process input variable (current) to obtain the desired output (field)

 WHY: to linearise the system by compensating nonlinearities (hysteresis)

+ HOW

- Theory: use model to predict the process input variable (current) to obtain the desired output (field)
- Practice: invert the magnet model

 WHY: to linearise the system by compensating nonlinearities (hysteresis)

+ HOW

- Theory: use model to predict the process input variable (current) to obtain the desired output (field)
- Practice: invert the magnet model
 - Inversion of the Coleman-Hodgdon model using the lambert function (calculated by on-line numerical integration)

New control system: stability

C-H Hysteresis

+ The PID feedback loop with differential hysteresis is asymptotically stable:

 $dvnamic m_1\dot{h} + k_1h$

+ Stability condition hypothesis

PID

- 1) If the input is continuous \longrightarrow output continuous
- 2) The hysteresis is monotone \longrightarrow (ferromagnetic hysteresis)
- 3) The hysteresis operator is Lipschitz
- The hysteresis is multi-bracket continuous

 d_1

5) The output is bounded (saturation)

The PI limiting condition $(k_d = 0) \longrightarrow 0 < k_i < \frac{k_p k_i}{m_1} < \frac{k_1^2}{\lambda m_1}$

The PID limiting condition $\longrightarrow 0 < k_i < \frac{k_p k_1}{m_1} < \frac{k_p k_1}{\lambda k_d}$, $0 < k_p < \frac{m_1 k_i}{k_1} + \frac{k_1}{\lambda}$, $0 < k_d < \frac{m_1 (k_p k_1 - m_1 k_i)}{k_1^2}$

"H. Logemann B. Jayawardhana and E. P. Ryan. PID control of second order systems with hysteresis. International Journal of Control, 2008."

Final CATHI Review Meeting, 22-26 September 2014

Where: d_1 = input noise d_2 = measurement noise

r = reference signal

New control system: Simulation

New control system: Simulation results

Improved control performance achievable with PID tuning

New control system: implementation

New algorithm could be implemented in NI Labview Real Time on a PXI platform (*Fast development time*)

 The GUI would be the same as current control thanks to the FESA3 class standard interface layer.

+ FGC3 could be used to achieve better current control

Conclusions

System update

- the *FESA*3 classes have been developed
- the *GPIB* drivers for the NMR has been realised

Conclusions

System update

- the FESA3 classes have been developed
- the *GPIB* drivers for the NMR has been realised
- New control algorithm study which could:
 - reduce setup time
 - be more precise

Thank you for your attention