

Recent results on the development for the SPES target-ion source complex

Alberto Andrighetto INFN – Laboratori di Legnaro

Cathi Meeting 25 September 2014 ; Barcelona

Outline

- The SPES RIB production station.

- Laboratories and organization.

- Working groups results.

- Conclusions.

Alberto Andrighetto

INFN

tituto Nazionale i Fisica Nucleare

SPES Target :

Optimized for 8 kW

SPES Heater,

<u>lonizer &</u> Chamber

 $(E = 40 \text{ MeV}, I = 200 \mu \text{A})$

power dissipation

The TIS device

7 UCx coaxial disks: thickness: 1.3 mm diameter: 40 mm

Graphite box: ____ external diameter: 49 mm average length: 200 mm

3 graphite dump disks

Tantalum tube: external diameter: 50 mm thickness: 0.35 mm length: 200 mm

Ionizer & transfer tube: thickness: 1 mm height: 34 mm Inner diameter: 3 mm Aluminum target unit

Alberto Andrighetto

The TIS on operation

The SPES (off-line) RIB station

The TIS SPES (8) Laboratories

Alberto Andrighetto

The TIS five Working Groups

WG-1: Target and Ion Sources

WG-2: Target Materials

WG-3: Laser

WG-4: Handling

WG-5: Front End

Alberto Andrighetto

TIS: Definition of the unit device 1/6

Thermocouple (type C)

Graphite dump

Alberto Andrighetto

TIS: Ion Source Developments 2/6

The SPES SIS Ion source

Re lonizing Cavity and **Ta** lonizing Cavity

MEASUREMENT POINT

OFF-LINE TESTING efficiency and emittance measurements with accurate temperature monitoring

0

TIS: Ion Source Developments 3/6

The SPES PIS Ion source

OPTIMIZED EXTRACTION REGION low transversal emittance values (now under testing at LNL)

OPTIMIZED CATHODE GEOMETRY hot spot close to the anode interface (thermionic electron production)

TIS: Ion Source Developments 4/6

WG-01

> Emittance measurements for SIS and PIS (@ 25kV extraction voltage)

TIS: Ion Source Developments 5/6

> Efficiency measurements for SIS

Alberto Andrighetto

TIS: Ion Source Developments 6/6

> Efficiency measurements for PIS

Reduction of contaminants: graphite support V.S. Stainless Steel support

Cathi Meeting Sept '14

Alberto Andrighetto

Target: Experimental test 1/4

1) scaled (d = 13 mm) SiC SPES tested @ ORNL (2007), – 40 MeV, 12 μA p beam, for thermal & release study

2) scaled (d = 13 mm) UC_x SPES tested @ ORNL (2010-2011) - 40 MeV, 50 nA p beam, for relase study

	2010 Standard UC _x	2011 Low density UC _x	10 ⁹ Cd 119m
Density (g/cm³)	4.25	2.59	10³ 121m 123m
Diameter (mm)	12.50	13.07	
Thickness (g/cm²)	0.41	0.41	
Calculated porosity (%)	58	75	$\begin{bmatrix} 10^{6} \\ 0.1 \\ 10 \end{bmatrix} \xrightarrow{\mathbf{X}} \xrightarrow{\text{standard 1600°C}} \text{Standard 1600°C} \\ 100 \\ 100 \\ 100 \\ \text{T}_{1/2} (s) \end{bmatrix}$

uto Nazionale

Target: Experimental test 2/4

Actilab ENSAR JRA collaboration

3) scaled (d = 14 mm) UC_x-CNT discs tested @ CERN (2009) and IPNO (2013) for release efficiency studies

Target: Experimental test 3/4

WG-02

4) Full scale (40 mm.) SiC @ Ithemba, p=66 MeV, 60 microA for thermal dissipation studies
➢ On-line testing of the SPES target architecture @ iThemba (May 2014)

iThemba LABS: funded to build an RIB station like SPES (10 kW multi-foil target)

Target: Experimental test 4/4

>On-line testing of the SPES target architecture @ iThemba (2013-2014) >66 MeV, up to 60 μ A - proton beam on a SiC target (Tmax on SiC =1600°C)

Laser: The LNL Laboratory 1/2

In 2013 a new SPES laser laboratory was build

A tunable dye laser system ready for atomic spectroscopy study

Laser: Activities at LNL 2/2

Design/construction of new Time of Flight Spectrometer

Alberto Andrighetto

Handling: The SPES overview 1/4

Two systems are foreseen in order to increase the handling security level

exotic beams for science

Handling: The Horizontal system 2/4

Alberto Andrighetto

Handling: The vehicle AGV based 3/4

Devices under construction at the LNL mechanical workshop

Handling: R6D for Puller Handling 4/4

Alberto Andrighetto

Front End: Beam transport trace-back 1/5

WG-05

lstituto Nazionale di Fisica Nucleare

Front End: extraction optimization 2/5

WG-05

Optimization of FE optics in order increase the RIB transport

Alberto Andrighetto

Front End: design for On-line version 3/5

Critical material List

Teflon with glass fibres Polyethylene Viton O-rings Plastic cable insulator Normal motors

-> peek -> EPDM -> air (close the target) -> RAD HARD motors

-> alumina

Off-line FE

On-line FE

Front End: Study on damage 4/5

Use of the LENA (PV) reactor for material testing (collaboration started on June 2014)

Reactor for research TRIGA Mark II (250 kW) – LENA since 1965

Alberto Andrighetto

Front End: Planning for damage test 5/5

Preliminary program of Italian collaboration: SPES, LENA, INFNPV, UNIBS

1. Compilation of materials of interest for the SPES project to be rad-hard tested;

-><u>working in progress</u>

- 2. Evaluation by MCNPX, FLUKA codes of the radiation fields and cumulated dose expected on the critical components inside the ISOL bunker -> <u>working in progress</u>
- 3. Characterization of the obtainable radiation fields in the TRIGA Mark II in order to reproduce as close as possible the expected inside the SPES bunker. -> <u>early</u> 2015
- 4. Planning of irradiation campaigns at L.E.N.A. reactor on sample of SPES critical materials. . -> <u>early 2015</u>
- 5. Tests on irradiated samples physical and operational properties of materials corresponding to different levels of irradiated dose; . -> <u>late 2015</u>
- 6. Post-irradiation study of irradiated samples in order to evaluate the radiation damage (mainly for polymers). . -> <u>late 2015</u>

Possibility to extend the collaboration with external partners (Is fully welcome!)

Conclusions: the collaboration network...

ituto Nazionale

Conclusions: the group...

Alberto Andrighetto

and finally ..

Thanks for your attention!

Alberto Andrighetto

