SRF Cavity Review: Focus on some low beta cavities developments in Europe and WW

Sébastien Bousson

CNRS/IN2P3/ IPN- Paris-Sud University

Outlook

- A (very) brief history of SRF
- Main SRF developments in Europe for protons /ions accelerators
 - Spiral-2
 - IFMIF
 - ESS
- Worldwide SRF "at a glance": C-ADS, FRIB
- Conclusion

* HiE-ISOLDE is the other important SRF project in EU but not depicted in this overview since there is dedicated talks in this same meeting

What is not covered...

Not an exhaustive review, but one could refer to the following ongoing activities to be complete:

- In Europe:
 - for MYRRHA (spoke, elliptical)
 - several R&D programs in INFN Legnaro, U. Frankfurt, IPN Orsay, CEA Saclay, STFC, INFN Milano...
 - for SPL (elliptical): CERN, CEA, IPN Orsay
- Worldwide:
 - for ADS programs (India, Japan)
 - R&D programs in Fermilab, Jlab & ODU, Univ. Beijing, Triumf...
 - for machine upgrades: @ANL, @SNS, @TRIUMF
 - for project/construction: RAON (Korea), SARAF (Israel)
 - for deflecting cavities (crab): BNL, SLAC, ODU, Daresbury

SRF Technology for accelerators:

- Has started in 1961 when W. Fairbank (Standford University) proposed for the first time a superconducting accelerator
- In 1964 W. Fairbank, A. Schwettman, P. Wilson (Standford University) have first accelerated electrons with a SC lead cavity
- In 1970, J. Turneaure (Standford University) reached Epk=70 MV/m and Qo ~10¹⁰ in a 8.5 GHz cavity !
- Between 1968 and 1981, Mc Ashan, J. Turneaure, A. Schwettman, T. Smith,
 P. Wilson (Standford University) developped and constructed the SCA (e⁻)

SRF Technology then gained maturation:

- With facilities : CEBAF (@ Jlab) and LEP-II (CERN)
- With the TESLA collaboration (mid 90s) : important effort to develop the SRF technology (TTF, FLASH) up to a real industrial scale with XFEL

A bit of history...

2 SRF categories: electron cavities (β =1, elliptical in 99% of the cases)

proton/ion cavities (β <1, multiple shapes)

Same core technology, but design and optimization issues very different

SRF Developments in Europe for protons and ions Accelerators

S. Bousson – CATHI Final Review Meeting – 22 to 26 Sept. 2014 - Barcelona

- 6 -

Project objectives: construction of a 40 MeV deuterons accelerator (which can also accelerate q/A = 1/3 and 1/6) as a driver for RIB production

1ª 1ª 1	1 1 1			朝1 2 朝1 2 朝		
<u> </u>	Beta 0.07	<u>enerav sectio</u>	<u>n L~35 m</u>	Beta 0	.12 enerav sectio	n 🔨

	00 B	Cryomodule	Α	В
	n	Valve-to-valve length [mm]	610	1360
		# cavities	12	14
	01-0	f [MHz]	88.05	88.05
		β_{opt}	0.07	0.12
		Epk/Eacc	5.36	4.76
lattic 1040 p	nm	Bpk/Eacc [mT/MV/m]	8.70	9.35
lattice		r/Q [Ω]	599	515
1130	Ĺx	Vacc @ 6.5 MV/m & β_{opt}	1.55	2.66
Cryomodule A Cryomodule B Power	coupler	Lacc [m]	0.24	0.41
CEA Saclay IPN Orsay LPSC G	Grenoble	Beam tube \varnothing [mm]	38	44

Low beta cavities ("A" type): developped by CEA Saclay: QWR with dismountable copper bottom flange

Zanon and SDMS cavities 13 cavities fabricated in total

Courtesy P. Bosland

High beta cavities ("B" type): developed by IPN Orsay: QWR with welded Nb bottom flange, Titanium He tank (4 mm), SS cavity flanges.

Total produced: R&D phase: 1 prototype +2 pre-series Series production: 16 (made by Research Instruments)

Low β Cold tuning system

Mechanical tuner, push system

Good linearity: 0.15 Hz/motor step Sensitivity: ~28 kHz/mm Full range: +25 kHz

High β Cold tuning system

Tuning by insertion of an Nb rod

2 ports on the top of the cavity:

- a) One static plunger
- b) One moving plunger

Sensitivity ~1 kHz/mm with Ø 30 mm plunger Introducing one plunger by 50 mm(Ø 30 mm) First "coarse" tuning: + 50 kHz then fine tuning: +/- 4 kHz

Performance Goal : 6.5 MV/m and 10 W max.

- Preparation: standard BCP, HPR @ 100 bar, class 10 clean room assembly
- All cavities exhibits multipacting. MP Barriers above 1 MV/m are easily processed. FE level and onset is variable, but when present, it is always processed in VT.
- Low β cavities: all cavities tested are in the spec. Some have Eacc > 10 MV/m !
- High β cavities: all series cavity tested and in the spec with important margins !

8/12 low β CMs and 5/7 high β assembled, tested and delivered to Ganil

ION

SOURCE

REAM

10

20

Cavity type: Half-wave resonators

IFMIF-LIPAC (CEA, CIEMAT)

Project objectives: characterization of materials with intense neutrons flux (10¹⁷ n/s) for the future Fusion Reactor DEMO (~150 dpa). Based on two CW 40 MeV deuterons SC linac, 125 mA each.

BEAM DUMP

30

Courtesy F. Orsini

EVEDA (demonstrator)

Parameters	Target Value	Units
Frequency	175	MHz
β value	0.094	
Accelerating field E _a	4.5	MV/m
Unloaded Quality factor Q_0 for $R_s=20 n\Omega$	1.4×10 ⁹	
Freq. range of HWR tuning syst	± 50	kHz
Max. transmitted RF power by coupler (CW)	200	kW
External quality factor Q _{ex}	6.3×10 ⁴	

IFMIF-LIPAC (CEA, CIEMAT)

Parameter	Value	Unit	After plunger tuner removal prototype P02 performance	Э
Frequency	175	MHz	exceed specifications	
Maximum r/Q	150	Ohm		
Optimum beta	0.11			
Design beta	0.094		G. Devanz	
r/Q @ design beta	140	Ohm	Linac 2014	
Epk/Eacc	4.8		A AB	
Bpk/Eacc	11	mT/(MV/m)	P02 welded Nb disk 4.2K 12 dec 2012 P02 welded Nb disk 1.5K 12 dec 2012 Acceptance criteria X-ray dose rate CV1 top	
Nominal Eacc	4.5	MV/m	1,0E+10	100
Nominal Qo	5 10 ⁸		AW-	
F		Trinida, pr. a	1,0E+09	100
1. 2019 (M) 1. 2019 (M) 1. 3 (M + M) 1. 3 (M + M) 1. 3 (M + M) 1. 2 (M + M) 1. 2 (M + M) 1. 2 (M + M)	1		8	
101900 101900 101900 101900 101900 101900 101900	1	1 (2014) 1.401 (40) 1.401 (40) 1.		10
		1000		10
	_	~		1
ne original ca	avity de	sign include	0 1 2 3 4 5 6 7 8 9 10 S a Face (MV/m))
perconducti	na plur	nder tuner		

New cold tuning system: compression tuner (cavity body deformation)

-13 -

IFMIF-LIPAC (CEA, CIEMAT)

Cryomodule: 8 HWR + 8 solenoïd package (solenoïd, steerer, BPM)

ESS Linac: SRF Technology from 90 MeV to 2 GeV

	-		352.21	MHz	\rightarrow \leftarrow	704.42 MHz			
	←2.4 m→ ←	4.6 m → ←	-3.8 m→	€39 m → €5	i6 m → ← 77	$m \rightarrow \leftarrow I$	^{79 m} →		
Source 🔸	LEBT +	RFQ	MEBT		okes 🔶 Mediu	ım β 🔶 F	ligh β 🔶 HEB1	& Contingency	•
		Ŷ					Û		
75 ke	v	3.6 Me	v	90 MeV	216 MeV	561 MeV	2000 MeV		
Requirements	Spoke	Medium	High	_					
Frequency (MHz)	352.21	704.42	704.42	-					
Geometric beta	0.50	0.67	0.86	_	Beam p	ower (N	1W)	5	
Nominal Accelerating	<u>5</u> 9.0	16.7	19.9	_	beam cu	urrent (n	nA)	62.5	
gradient (MV/m)				_			,		
Epk (MV/m)	39	45	45		Linac er	nergy (G	eV)	2	
Bpk/Eace	<8.75	4 79	43	_	Beam p	ulse len	ath (ms)	2.86	
(mT/MV/m)				_	_		5 (
Epk/Eacc	<4.38	2.36	2.2		Repetitio	on rate (Hz)	14	
Iris diameter (mm)	50	94	120						
RF peak power (kW)	335	1100	1100			Nun	n. of CMs	Num	
G (Ω)	130	196.63	241					cavit	Ì
Max R/Q (Ω)	427	394	477	Spoke			13		
Qext	2.85 10	7.5 10	7.6 105	6-cell r	nedium ß		9		
Q0 at nominal	1.5 10	> 5 109	> 5 109		healann p		21		
gradient				5-cell r	lign p		21		

S. Bousson – CATHI Final Review Meeting – 22 to 26 Sept. 2014 - Barcelona

- 15 -

EUROPEAN SPALLATION SOURCE

EUROPEAN SPALLATION SOURCE

ESS Linac: Spoke section

Power Coupler

- Ceramic disk, 100 mm diameter
- 400 kW peak power
- Antenna & window water cooling
- Outer conductor cooled with Lhe
- Doorknob transition from coaxial
- to ½ height WR2300 waveguide
- 4 prototypes under fabrication 2 prototypes already fabricated (delivery in early October 2014) S. Bousson – CATHI Final Review Meeting – 22 to 26 Sept. 2014

Double Spoke SRF Cavities

- Double spoke cavity (3-gaps), 352.2 MHz, β=0.50
- Goal: Eacc = 9 MV/m [Bp= 72 mT; Ep = 39 MV/m]
- 4 mm (nominal) Niobium thickness
- Titanium Helium tank, Ti stiffeners
- Lorentz detuning coeff. : -4.4 Hz/(MV/m)²
- Tuning sentivity $\Delta f / \Delta z = 128 \text{ kHz/mm}$
- 3 prototypes under fabrication (delivery sept & oct 2014)

Cold tuning system

- Slow tuner (stepper motor): Max tuner stroke: 1.28 mm Max tuning range: 170 kHz **Tuning resolution: 1.14 Hz**
- Fast tuning by 2 piezos actuators Noliac 50x10x10 or PI 36x10x10 mm Applied voltage up to +/- 120 V Estimated tuning range: ~ 1 kHz

EUROPEAN SPALLATION SOURCE

ESS high energy sections: 704 MHz elliptical cavities

0.67 6 1259 16.7 14.3 > 5	0.86 5 1316 19.9 18.2	Cea
6 1259 16.7 14.3 > 5	5 1316 19.9 18.2	Carlon and
1259 16.7 14.3 > 5	1316 19.9 18.2	CANOLOU CO
16.7 14.3 >5	19.9 18.2	
14.3	18.2	
> 5	99	Modium Q
10	0.0	Medium p
4.9	6.5	
7.5 105	7.6 10 ⁵	
94	120	
1.2	1.8	High β
0.53	1.2	Mag.
2.35	2.2	shield.
4.78	4.3	
397	477	
0.705	0.92	X start
197	241	
-2	-1	
rtesy G	. Devanz	Piezo tuner
over the	He jacke	(target 1 4 µT)
	4.9 7.5 10 ⁵ 94 1.2 0.53 2.35 4.78 397 0.705 197 -2 rtesy G ver the	4.9 6.5 7.5 10 ⁵ 7.6 10 ⁵ 94 120 1.2 1.8 0.53 1.2 2.35 2.2 4.78 4.3 397 477 0.705 0.92 197 241 -2 -1

Use as far as possible tesla technology material (Ti tank, Al gaskets)

S. Bousson – CATHI Final Review Meeting – 22 to 26 Sept. 2014 - Barcelona

EUROPEAN SPALLATION SOURCE

ESS (17 Eu countries) EUROPEAN SPALLATION SOURCE

ESS high energy sections: 704 MHz elliptical cavities

Main SRF Developments worldwide for protons and ions accelerators

S. Bousson – CATHI Final Review Meeting – 22 to 26 Sept. 2014 - Barcelona

- 20 -

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY

FRIB (MSU)

FRIB: Produce RIB using a 400 kW CW HI driver linac (p to U) up to 200 MeV/u. Challenge: All SRF from low β(0.041) to middle β(0.53)

FRIB (MSU)

Improved cavity design with lower Hp/Eacc and Ep/Eacc

- The SRF Review Committee in 2011 recommended not to exceed E_p=35 MV/m and B_p=70 mT in operation based on experimental data of 40 QWRs in operation at TRIUMF
- FRIB has adopted this specification to guarantee reliable operation of its linac with a good safety margin
 - lower E_p & B_p, higher R_{sh} by increased outer conductor diameter
 - Increased aperture of QWRs from 30 to 36 mm
 - Increased operation E_{acc}: the FRIB driver linac could be shortened by 2 cryomodules
 - FRIB operation gradient now more conservative, with B_p≤70 mT ,

Courtesy K. Saito S. Bousson – CATHI Final Review Meeting – 22 to 26 Sept. 2014 - Barcelona

Chinese-ADS (IMP & IHEP)

C-ADS: Roadmap of the project

Courtesy H. Zhao

-23-

Chinese-ADS (IMP & IHEP)

Injector I: Spoke012

✓ Max. B_{peak}=107 mT @ Q₀=4.0x10⁸

- 24 -

Main Linac: Spoke021

Conclusions

S. Bousson – CATHI Final Review Meeting – 22 to 26 Sept. 2014 - Barcelona

- 25 -

SRF technology for accelerators

- Is a technology of choice for high power acceleration / high duty cycle, thanks to intrinsic efficiency and its maturity gained over the past 25 years.
- Can efficiently accelerate high (and low...) power ion beam starting from a few MeV/u (starting at $\beta \sim 0.05$)
- The type of cavity and implementation in the accelerator needs to be carefully chosen according to beam specifications and requirements: range of β , beam current, variety of beam species to accelerate, final energy, reliability, upgradability, ... and cost !
- The cavity type or design IS NOT the whole story: coupling the power to the beam, tuning the cavity, prepare the cavity (dust is a tough and invisible enemy !), integration in a cryomodule are even more potential sources of problems.

-26-

β < 1 superconducting cavities

• SC RF developments is very active in Europe (and worldwide), especially (this is quite recent) for developing low beta cavities ; many projects are under study or construction and drive intense R&D programs on such accelerating structures.

-> Potential for real technological synergies between projects.

• There are many issues faced by all projects for these structures: field emission, multipacting, tuning capabilities, mechanical stiffness, and all required a dedicated study because all cavities are different (cavity type, frequency, β , coupling or tuning solutions)...

 Progress done are tremendous, and in some cases, peak fields achieved start to be comparable with the ones obtained on electron cavities.

Some Trends & Future

- Still increasing number of labs worldwide developing SRF Technology, (specially low beta) due to the variety of potential applications.
- But most of the labs involved in project development (engineering) rather than upstream R&D (fundamental research on SRF)
- SRF Technology is mature, and we are starting to touch the limits of bulk niobium technology -> need alternatives (thin films: various deposition methods, various SC material).
- Several very high power projects (IFMIF, ESS,...) for which the limiting technology is the power coupler -> topic of highest interest in the coming decade.
- Many Spoke-type cavities developments worldwide, even at $\beta=1$

Conclusion (4)

THANK YOU !

S. Bousson – CATHI Final Review Meeting – 22 to 26 Sept. 2014 - Barcelona

- 30 -