

EUROPEAN SPALLATION SOURCE

The ESS superconducting radio-frequency linac activities and implementation

Christine Darve Deputy WP leader SRF accelerator

CATHI Final Review Barcelona, September 25, 2014

www.europeanspallationsource.se

Outline

- The ESS Project
- SRF cavities and cryomodules
- SRF fabrication and testing

Materials, Life Science and Society

Spallation Sources

Philosophie de "Pré-vert": Greenfield

Japan 2008:

JPARC (<1MW)

USA 2006: SNS (<1.4 MW) 1 GeV, 26 mA in linac, 627 ns long pulse, 60 Hz

- Will bring new insights to the grand challenges of science and innovation
- Collaborative project: more than 17 countries
- 2014: Start of construction phase of the world's most powerful linear proton accelerator
- 2019: Provide the world's most advanced tools for studying materials with neutrons
 (~ 450 employees; > 2500 users / year)

Helicopter view of ESS

Road to realizing the world's leading facility for research using neutrons

ESS ground Breaking

Jan Björklund (Swedish Research minister), Sofie Carsten Nielsen (Danish Research minister) 2014 September 2

Top-Level ESS Project Schedule

Collaborative projects

- ESS is an emerging research laboratory with (still) very limited capacity in-house
- Two possibilities:
 - Limit the scope of the project so that it can be done with in-house resources
 - Work in a collaboration where the scope of the project can be set by the total capacity (distributed) of the partners
- The accelerator part of the project well suited for this as this community has a strong tradition of open collaboration (XFEL, FAIR, European commission framework programs and design studies, LHC,...)
- To keep cost down and to optimize schedule this requires that investments in required infrastructure is done at the partner with best capacity to deliver

New Collaborations to Empower?

John Adams Institute for Accelerator Science, London and Oxford

EUROPEAN SPALLATION SOURCE

Science institutions involved in the design & construction of ESS

INFN, Catania Lund University Uppsala University Accelerator Science and Technology Centre, Daresbury and Oxford, Bilbao CERN, Geneva Cockcroft Institute, Daresbury Technical University of Lisbon **DESY**, Hamburg ESS Bilbao Fermi National Laboratory, Chicago

Oslo, Univer ET. Halden Linköping University Aarhus University **Risø**, Roskilde

DTU, Copenhagen University of Copenhaden

KIT, Karlsruhe CEA Saciay, Paris TU, München

Berlin

CNR, Rome

CERN, Geneva 🔎

CRSA, Sardinia

Laval University, Canada Maribor University, Slovenia National Centre for Nuclear Research, Poland **Oslo University Rostock University** Spallation Neutron Source, Oak Ridge Stockholm University Techical University of Darmstadt Nuclear Physics Institute Of The Ascr Czech Technical University, Prague **Aarhus University** Uppsala, University University Of Copenhagen **University Of Southern Danmark** Technical University Of Danmark - Dtu Institut Laue-Langevin - III Llb (Laboratoire Léon Brillouin) Helmholtz-Zentrum, Berlin ational CentHelmholtz-Zentrum, Geesthacht uclear Research Poland University, Munich Forschungszentrum, Jülich **Elettra-Sincrotrone Trieste** Università Di Perugia **Consiglio Nazionale Delle Ricerche Delft University Of Technology** Institute For Energy Technology, Ife Linköping University Mid Sweden University Epfl | École Polytechnique Fédérale De Lausanne Paul Scherrer Institute, Psi

ESS Bilbao

Accelerator project collaborations

EUROPEAN SPALLATION

SOURCE

[SRF2013 – "The ESS Superconducting Linear Accelerator", C. Darve, M. Eshraqi, M. Lindroos, D. McGinnis, S. Molloy, P. Bosland and S. Bousson]

SRF Cavity Cryomodules for the ESS

Cavities Development

Spoke cavity

Elliptical cavities

EUROPEAN SPALLATION

SOURCE

ESS Requirements and RF Parameters

Spoke cavities

Elliptical cavities

Frequency (MHz)	352,2		Medium	High
Optimum beta	0,50	Geometrical beta	0.67	0.86
Operating temperature (K)	2	Frequency (MHz)	704.42	
Nominal Accelerating gradient (MV/m)	9	Number of cells	6	5
Lacc (β opt.x nb gaps x $\lambda/2$) (m)	0,639	Operating temperature (K)	2	
Bpk (mT)	79 (max)	Epk max (MV/m)	45	45
Epk (MV/m)	39 (max)	Nominal Accelerating gradient (MV/m)	16.7	19.9
Bpk/Eacc (mT/MV/m)	<8,75	Q_0 at nominal gradient	> 5e9	
Epk/Eacc	<4,38	Q _{ext}	7.5 10 ⁵	7.6 10 ⁵
Beam tube diameter (mm)	50	Iris diameter (mm)	94	120
RF peak power (kW)	335	Cell to cell coupling k (%)	1.22	1.8
G (Ω)	130	p,5p/6 (or 4p/5) mode sep. (MHz)	0.54	12
Max R/Q (W)	427		0.00	0.0
Qext	2,85 10 ⁵	Ерк/Еасс	2.36	2.2
Q0 at nominal gardient	1 5 10 ⁹	Bpk/Eacc (mT/(MV/m))	4.79	4.3
de actioninal galaione	.,	Maximum. r/Q (W)	394	477
		Optimum β	0.705	0.92
		G (Ω)	196.63	241
		RF peak power (kW)	1100	

FIRST COLD TEST RESULT OF FIRST ESS HIGH BETA PROTOTYPE CAVITY

- Measurements done the 22th of May 2014 in <u>vertical cryostat</u> at CEA Saclay
- Testing conditions: CW mode
- Operating temperature: 2 K
- Resonant frequency of π mode (measured): 704.292788 MHz
- External coupling (measured): Q_i = 6.5^e9 ± 1^e9, Q_t = 6.8^e12
- Parameters used : G = 241, R/Q = 435.35 Ω (at β = 0.86), L_{acc} = 0.92 m

Next plans:

- Measurement of resonant frequency of 1st bandpass mode at 2K
- Measurement of resonant frequency of HOM at 2K
- If possible, increase accelerating field up to the guench limit
- Perform heat treatment at CERN at 650°C under vacuum

C. Darve – CATHI Final Review Meeting - 25 Sept. 2014

Medium-β Elliptical Cavities

 K_{L} reduction $% \mathrm{L}$ using compensation rings for medium and high-beta

Nominal wall thickness [mm]	3.6
Cavity stiffness Kcav [kN/mm]	2.59
Tuning sensitivity Df/Dz [kHz/mm]	197
K_L with fixed ends [Hz/(MV/m) ²]	-0.36
K_L with free ends [Hz/(MV/m) ²]	-8.9
Pressure sensitivity K_{P} [Hz/mbar] (fixed ends)	4.85

C. Darve – CATHI Final Review Meeting - 25 Sept. 2014

RF/mechanical design

Lorentz detuning

$$K_{\rm L} = \Delta f / E_{\rm acc}^2$$

$$K_{L} = K_{L\infty} + \frac{\Delta f}{\Delta z} \frac{\overrightarrow{F_{\infty}} \cdot \overrightarrow{u_{z}} / E_{acc}^{2}}{K_{ext} + K_{cav}}$$

Cavity Cryomodule - Generic

Similar to SNS in size and purpose : re-use the same concepts

EUROPEAN

SPALLAT

Similar medium and high-beta cavity cryomodules

- Common design: Small length difference between medium and high-beta cavities
- Distance between power couplers
- Vacuum vessels, thermal shield, supports, alignment system.

Only minor differences:

- Length of the inter-cavity bellows, details in cryo piping, beam pipe bellows
- Tuner piezo frames
- Penetration of the antenna for Q_{ext} adjustment

Cryomodule Interfaces

- Most AD internal Work Packages (beam optics, RF, cryo, vacuum, test stands, electrical, cooling, installation)
- External WPs cryomodule, cavity and designers and potential In-Kind collaborators

EUROPEAN

SPALLATION

- Control command (Control Box, PLC, LLRF, MPS, EPICS)
- Data-logging ICS teams Cryogenic distribution ESS ES&H **Control system Conventional Facility** ESS system engineer, QA Beam Survey experts Diagnostic Transport cavity [kW] 28800 DTL spoke medium β cells Beam cavities elliptical cavities 600 **Optics Beam Previous Linac** 400 Vacuum version for high (200elliptical cavities comparison **→ Radio-Frequency** 100 200300 400 Longitudinal position [m] C. Darve – CATHI Final Review Meeting - 25 Sept. 2014

Elliptical Cryomodule Components

EUROPEAN SPALLATION SOURCE

Elliptical Cryomodule Components

Spoke cavity string and cryomodule package

Cold Tuning System

Spoke CTS

Stepper motor and planetary gearbox (1/100e) at cold and in vacuum

2 piezo stacks

&

Elliptical CTS

Type V ; 5-cell prototype +/- 3 mm range on cavity

Slow tuner

Main purpose : Compensation of large frequency shifts with a low speed Actuator used : Stepper motor

Fast tuner

Main purpose : Compensation of small frequency shifts with a high speed Actuator used : Piezoelectric actuators

Fundamental Power Coupler

EUROPEAN SPALLATION

SOURCE

Elliptical Assembly Procedure

Design concept of the tooling: most of parts will be used for both types of elliptical cryomodules

Spoke assembling in clean room/IPNO

Infrastructure in Saclay

The clean room inauguration → May 13th 2014 Possible IKC for the assembly by industry at Saclay (XFEL cryomodules assembly)

- Uses the current infrastructure at Saclay
- Benefits from the experience of the XFEL cryomodule assembly (ALSYOM)

Standards and ESS Safety Culture

Engineering standards

 Codes and standards: CEN, European Committee for standardization and SIS (Swedish Standard Institute) EUROPEAN

- ISO, International Organization for standardization
- → Compliance with Pressure European Directive 97/23/EC; EN ISO 4126
- → Necessary procedures validated by "Notified body"
- → "ESS guidelines for design, manufacture, conformity assessment and operation of pressure equipment for cryomodules"
- → Standardization effort (e.g. naming convention, motion ctl)

Radio-Protection and Rad-hard equipment

- As low as reasonable achievable (ALARA)
- Passive and active safety measures (safety barrier)

Personnel **Protection System** and Machine Protection System (IEC61508) **Risk Analysis** (Project and Technical risk assessment) **Reliability Study** (Systematic over the ESS) **Safety Reviews** (Preliminary DR, Critical DR, Annual Audit) **Quality Assurance**

Cryomodule Technology Demonstrators

One full scale spoke, medium and high-beta cavity cryomodules tested by end of 2016 ! A staged approach towards the series industrialization and the ESS Linac tunnel installation

- Validate designs and construction capability of SRF components
- Prepare the industrialization process by validating component life-cycles (incl. assembling process, QA/QC)
- Validate component performances (incl. RF, mechanical, thermal)
- Develop ESS SRF linac operating procedures
- Validate control command strategy (Control box, PLC, EPICS, LLRF)
- Validate ESS interfaces with RF, cryogenics, vacuum and control systems
- Train people in ESS SRF Technology and build an ESS collaboration

C. Darve – CATHI Final Review Meeting

Preparation of the stand for the RF power tests at 2 K

EUROPEAN

SPALLATION

SOURCE

Development and installation of:

- Cryogenic line (L > 50 m) + Dewar + ESS valves box + jumper line
- 2. C/C system
- 3. RF wave guide line at 704MHz
- Modification of the klystron modulator to increase the pulse length up to the ESS requirements (2ms => 3ms)

ESS Control and Command System

EUROPEAN

SPALLATION

SOURCE

+;

ORSAY

Process and Instrumentation

Version 20140314 NE C. Darve – CATHI Final Review Meeting - 25 Sept. 2014

R&D on High Voltage and High Power Klystron Modulators for the ESS accelerator

An effective collaborative effort in Skåne

- ESS has established an innovative R&D program with LTH Lund University, involving local industry...
 - ... for the design, construction and testing of
 - ... a reduced scale technology demonstrator of
 - ... a High Voltage High Power Klystron Modulator rated at
 - ... 115 kV (pulse voltage), 2.3 MW (pulse power), 3.5 ms / 14 Hz

(pulse length and repetition rate)

- Worldwide unique technology, at this power level, requiring new concepts and new construction techniques;
- Project development period: From June 2013 to April 2015;
- 35 units will be required for ESS accelerator, with a power rating 5x higher than the reduced scale technology demonstrator

From a conceptual design to reality..

A new collaborative Project for Spallation in Europe

- Technology Demonstrators will validate new SRF cavity and cryomodule component designs by the end of 2016
- Build further capacity in industrialization process
- Strengthen the scientific worldwide partnership for SRF Technology !

Thanks for your attention !

and thanks to our current and future partners (institutes, laboratories, companies)

