Overview of ISOL Facility at RISP

Sep. 25, 2014

Hyung-Joo Woo

On behalf of ISOL Team Rare Isotope Science Project (RISP), IBS

CATHI Final Review Meeting, Sep. 22-26, 2014

Outline

- Validity of ISOL @RISP
- Layout
- Schedule
- ISOL system
 - target & ion sources
 - Pre-separator / RF-cooler / HRMS
 - charge breeder / A/q separator
 - offline test facility / beam diagnostics
 - budget / manpower
- Strategy / collaboration
- Summary

Key Science Driver of RAON (ISOL)

Highest priority research subjects

- Nuclear reaction experiments important to nuclear-astrophysics : e.g. $^{15}O(\alpha,\gamma)^{19}Ne,~^{45}V(p,\gamma)^{46}Cr$
- Search for super-heavy elements: Z>119 (Z ~120)
- Nuclear structure of n-rich RIs near 80<A<160
- Nuclear symmetry energy at sub-saturation density
- Important scientific applications
 - Precision mass measurement & laser spectroscopy
 - Material science : β -NMR, μ SR
 - Medical and bio-sciences
 - Nuclear data for next-generation NPP and nuclear waste transmutation

- User requirement :
 - high-quality (>90% purity),
 - intense n-rich RI Beam (highest priority)
- Method : RI beam from ISOL facility
 - ISOL with U fission target (max. 7x10¹³ fission/s)
 - 80<A<160
 - $10^6 \sim 10^9$ pps on exp. target

Worldwide ISOL Facilities (2013/10)

Fac	cility	Driver	Primary beam	Power on target	Fission rate (#/s)	¹³² Sn rate @lab. (pps)	State / 1 st RIB
TRIA	C, KEK	Tandem	30 MeV, 3 µA	0.09 kW	~1011	3x10 ⁵	closed
HRIBF	, ORNL	Cyclotron	40 MeV, 10 µA	0.4 kW	4x10 ¹¹	2x10 ⁵	closed
ISOLDE,	REX	Linac	1~1.4 GeV, 2 µA	2 kW	~1012	~107	upgraded to HIE
CERN	HIE	LINAC	1~1.4 GeV	~10 kW	~10 ¹³	~108	2014
ISAC,	TRIUMF	Cyclotron	450 MeV, 70 μA	17 kW	5x10 ¹³	?	in operation
SPIRAL (conv	2, GANIL /erter)	Linac	40 MeV (d), 5 mA	200 kW	~10 ¹⁴	(0.3~2)x10 ⁹	2015
SPES	, INFN	Cyclotron	40 MeV, 200 µA	8 kW	~10 ¹³	3x10 ⁷	2017
iThemba	phase-1	Cueletren	70 MeV, 0.115 mA	8 kW	~1013	(0.2~1)x10 ⁸	2020 (?)
LABS	Phase-2	Cyclotron	70 MeV, 0.5 mA	35 kW	5x10 ¹³	(0.8~4)x10 ⁸	?
	DICD	Cueletren	70 MeV, 0.143 mA	10 kW	1.6x10 ¹³	(2~4)x10 ⁷	2020
RISP, IBS	RISP	Cyclotron	70 MeV, 0.5 mA	35 kW	7x10 ¹³	(0.5~1.2)x10 ⁸	?
	Post-RISP	Linac	660 MeV, 0.6 mA	400 kW			

Science program with beam schedule

Room schodulo	Science program	Evn facility#	Beam s	pecies on exp. target [†]	Beam Intensity on exp. (pps)	
Deam scheuure	Science program	Exp. facility	Day-1	Extra 2 years	(required/expected)	
	Nuclear structure SHE search, rp-process, Spin physics	RS	⁵⁴ Cr	⁶⁴ Ni ^{26m} Al (²⁸ Si), ²⁵ Al (²⁸ Si), ⁴⁴ Ti (⁴² Ca), ^{14,15} O (¹⁵ N)	¹⁵ N, ⁵⁴ Cr ²⁸ Si, ⁴² Ca, ⁵⁰ Ti ²⁵ Al, ^{26m} Al, ⁴⁴ Ti, ^{14,15} O: (10 ⁵⁻⁶)	
2020.Q4 ~	Pigmy dipole resonance	LAS-L	⁵⁸ Ni	⁴⁰ Ca, ¹¹² Sn	$(10^{6-8} / < 10^{9-10})$	
$\frac{\text{from SCL1}}{(<18.5 \text{ MeV/u})}$	Biological effects	BM		¹² C	$(<10^{12}/>10^{12})$	
((10.5 Ne 1/4)	New materials, Polarized beam	β-NMR	8 <mark>1</mark> 8	Li by $(d, n)(n, \alpha)$ or $(p, 2p)$	⁸ Li (10 ⁸ /10 ⁹)	
	Neutron cross section	NSF	nl	by (p,n) and (d,n)	n (< $10^{12}/10^{12}$)	
2021.Q1 ~ from ISOL (~5 keV/u)	Hyperfine structure, Mass measurement	Ion Trap LS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	¹³² Sn (<10 ⁵ /10 ⁷) [‡] , ¹³⁰⁻¹³⁵ Sn (10 ³⁻⁶ /10 ³⁻⁷)	
2021.Q4 ~	r-process	RS	¹³² Sn	¹³⁰⁻¹³⁵ Sn	132 Sn (10 ⁶ / 10 ⁷).	
ISOL-SCL3 (<18.5 MeV/u)	Pigmy dipole resonance	LAS-L	¹³² Sn	⁵⁰⁺ⁿ Ca, ⁶⁰⁺ⁿ Ni, ¹⁰⁶⁺ⁿ Sn	^{65,66} Ni (10 ⁶⁻⁸ /10 ⁶⁻⁷)	
	New materials	μSR		μ^+ by (p, πx)	$\mu^+ (10^8 / 10^9)$	
2021.Q4 ~ SCL1-SCL2	Biological effects	BM		¹² C	$(<10^{12}/>10^{12})$	
(~ hundreds MeV/u)	Baseline experiments, Spin physics	LAS-H	⁴⁰ Ca	⁵⁸ Ni, ¹¹² Sn, ¹³² Xe	(10 ⁶⁻⁸ / <10 ⁹⁻¹¹)	
2022.Q2 ~	Nuclear structure	ZDS & HRS	¹⁰⁰⁺ⁿ Sn	¹⁰⁰⁺ⁿ Sn	1288 n (106-8 / 107)	
SCL1-SCL2-IF (~ hundreds MeV/u)	Symmetry energy	LAS-H	¹³² Sn	⁴⁴⁺ⁿ Ca, ⁶⁰⁺ⁿ Ni, ¹⁰⁶⁺ⁿ Sn, ¹⁴⁴ Xe	132 Sn (10 ⁶⁻⁸ /10 ⁷) [‡]	
2022.Q4 ~	Nuclear structure	ZDS & HRS		¹³² Sn	¹³² Sn (10 ⁶⁻⁸ /10 ⁷) [‡]	
ISOL-SCL3-SCL2-IF(X) (~ hundreds MeV/u)	Symmetry energy	LAS-H	¹⁰⁶⁺ⁿ Sn	¹³³⁺ⁿ Xe	144 Xe (10 ⁶⁻⁸ /10 ⁶)	
2023.Q2 ~ ISOL-SCL3-SCL2-IF (~ hundreds MeV/u)	Nuclear structure	ZDS & HRS			⁷⁸ Ni (/<2)	

RS: Recoil Spectrometer, LAS: Large Acceptance Spectrometer, BM: Bio & Medical, LS: Laser Spectrometer, NSF: Neutron Science Facility, ZDS: Zero Degree Spectrometer, HRS: High Resolution Spectrometer

† Beam species : SI (black), RI (Blue)

Beam purity >90 % for ISOL, ~9% for IF

Layout of the RISP Accelerator Complex

Layout of ISOL Facility

Planning for ISOL facility

ISOL Facility Schedule (updated, 2014. 9)

			2	012	20	013		2014	Ļ	2	015		2	016		20	17		20)18		2	019		2	020		2	021
	Systems		1Q 20	2 3Q 40	Q 1Q 2Q	3Q 4Q	2 1Q	2Q 30	Q 4Q	2 1Q 20	2 3Q	4Q 1	Q 20	2 3Q	4Q 1Q	2Q	3Q 4	1Q 1	Q 2Q	3Q 4	IQ 10	2020	2 3Q	4Q 1	Q 20	2 3Q	4Q 1	1Q 20	2 3Q 4Q
			1 4	7 10	0 13 16	19 22	25	28 3	1 34	37 40	43	46 4	9 52	55	58 61	64	67	70 7	3 76	79	82 8	5 88	91	94	97 10	0 103	106 1	.09 12	2 125 128
	Milestones				Т	DR V							10 Ta Pro	i kW arget totype	2				C ISC Ge	Compl OL Bu eneral	etion uildin Servi	of g & ices					1st Ge ▽	RI Be nerat	am ion
	ISOL Target Fabrication	10 kW Ucx (& non-Ucx)		T	D			FAB			SB-C	ом		I	AB								C	CON	1				
Target/Ion		35 kW UCx																								(F	AB	
Station	TIS Front-End	Off-Line		· ·	гр	ED		FA	в	INS		SB-C	сом	0															
	Front-End)	On-Line												ED		F	AB		•		IN	is SB-	О	[R	IB-C	ом		
	Beam Transport	Line			TD		Е	D		0			-			F	AB				P	vs	SB-C	ом	R	IB-C	ом		
	MRS						-	TD	-	E			FA	в							INS	SB-C	сом)		€ОМ	C I		
	RI ID Statio	n						-	TD		ED	FA	в	H-C	ом								C	INS	R	IB-CO	ЭМ		•
RI Beam	RF-Cooler						т	D	-	ED		FAB	+			vs	H-C	юм	•		INS	S SB	cor	•	RI	в-со	Эм	_	
System	HRMS			<u> </u>	TD					ED	0	FAB	0	IN	S (CEN	BG)	-8	SB-C	OM		INS (RAO	ŊSI	3-COI	R	IB-CO	ом		
	Charge Breeder	ECR					ç	H	con	4		SB-CC	ом	0							INS	,	SI (в-со	MR	IB-C	ом		
		EBIS		<u> </u>	TD			ED	FAB	Gun-te	st		EI	>		_	F	АВ	- •	-									
	A/q Separato	or			го	>				_	ED			F	AВ	_						NS	H-C	ом si	3-CO	RIB-	com		
P-Driver	Cyclotron															FAF	3				P	(S	co	M			to S		3
	Control System	Off-Line						1	гр	ED	FA		s H-C	сом										to	TIS		Exp.	Ha	Ш
Control & Safety	Control System	On-Line											EI			FA	В	-			IN	s	H-	сом	-				
	Remote Hand	ing						-	П		ED		FA	в	н-сол						IN	s							
	Technical Design Engineering Design	(TD)] gn (ED)]	installa Fabrica	tion (IN: tion (FA	5) B)	Hardw Stable	vare (Bear	Comm n Com	issior missi	ning (H- ioning (COM) OM)	_	RI	Beam C	Comn	nission	ning	(RIB-	сом)								

10 kW ISOL target

High power ISOL target

Temperature of 35 kW target

Size

	10 kW	35 kW	70 kW
fission rate (s ⁻¹)	1.6x10 ¹³	7.3x10 ¹³	1.5x0 ¹⁴
¹³² Sn production (s ⁻¹)	2.3x10 ⁹	9.7x10 ⁹	2.0x10 ¹⁰
¹³² Sn release rate (s ⁻¹)	2.2x10 ⁹	8.2x10 ⁹	1.6x10 ¹⁰
Yield @Exp. Hall (s ⁻¹)	1.1x10 ⁷	3.9x10 ⁷	7.5x10 ⁷

*BERTINI-ORNL model **assuming overall efficiency of ~0.5 %

- Advantage: High fission rate and efficient cooling
- Disadvantage: Long release time

Release rates

RI yield estimation

• $p + UCx \rightarrow n$ -rich isotopes (80 < A< 160) by fission reaction

106

107

10⁸

10⁹

10¹⁰

1011

• Fission rate (10 kW) : 1.6x10¹³ f/s

Expected lab. intensities (10 kW target)

Isotope	Half-life	Science	Lab. Yield (pps)
⁶⁶ Ni	2.28 d	pigmy	4x10 ⁵
⁶⁸ Ni	21 s	symmetry	5x10 ⁶
¹³² Sn	39.7 s	r-process, pigmy	1x10 ⁷
¹³⁰⁻¹³⁵ Sn	0.5 s ~ 3.7 min	Fine structure, precision mass	10 ⁴ ~ 10 ⁸
¹⁴⁰ Xe	13.6 s	Symmetry	3x10 ⁸
¹⁴⁴ Xe	0.4 s	Symmetry	1x10 ⁵

ISOL target preparation (I)

Processing route for carbide production

<u>Materials</u>

- La₂O₃ (99.99% powders, Sigma Aldrich)
- Graphite (<45 µm, Sigma Aldrich)
- MWCNTs (~90 wt.%, Hanwha Nanotech)

Powder & disk preparation

Two-step thermal treatment

- 1. Carbothermal reaction (2°C/min up to 1250°C, 24 h at 1250°C) under vacuum (10⁻⁷~10⁻⁵ mbar)
 - * La_2O_3 + 11C \rightarrow 2LaC₂ + 4C + 3CO
- 2. Sintering the carburized powders (2°C/min up to 1600°C, 4 h at 1600°C)
- 3. Slow cooling at a rate of 2°C/min

Characterization

- 1. Grain size, density & open porosity, stoichiometry (SEM-EDX, XRD, He-pycnometer)
- 2. (high-temperature) emissivity & conductivity (dualfrequency pyrometer)

Planetary Ball Mill

Glove Box

High-temp. (2100°C) Hgh-vacuum Furnace

ISOL target preparation (II)

Wet (IPA)

70

60

Dry

80

Target disks before & after thermal treatment

Summary of La carbide target preparation

No.	Carbon Source	Binder (Solid)	Mixing & Grinding	Thermal Treatment	Porosity
D1	Graphite	phenolic resin (0.4 wt%)	Dry-Ball Mill, 12hr, 500rpm	1250℃, 10hr / 1600℃, 10hr	open 20% (total 28%)
W1	Graphite	phenolic resin (1 wt%)	Wet, IPA-Ball Mill, 3hr, 500rpm	1250℃, 10hr / 1600℃, 10hr	open 49% (total 61%)
WD1	MWCNT	phenolic resin (2 wt%)	Wet, IPA-Stirring, 2.5hr, 700 rpm Dry-Ball Mill, 2hr, 100rpm	1250℃, 10hr / 1600℃, 10hr	open 77% (total 80%)
WD2	Graphite	phenolic resin (2 wt%)	Wet, IPA-Stirrer, 2.5hr, 700rpm Dry-Ball Mill, 2hr, 100rpm	1250℃, 10hr / 1600℃, 10hr	open 48%, (total 55%)

Target surface morphology by SEM

He-Pycnometer

13

RI Ion Sources (ISOL)

- Standard requests:
 - rapidity: for isotopes with short half-life (high-temp. & short connection with target)
 - efficiency: limited amounts of radionuclides
 - selectivity: less isobaric contamination
 - high intensity: up to 10^{14} atoms/s
 - high brightness: for trap & charge breeder injection
 - simple, reliable & radiation resistant
- No universal IS for on-line application
 - Alkali & alkaline earth metal : Surface Ionization Source (SIS)
 - Post-transition metal : Laser Ionization Source (LIS)
 - Gaseous element : FEBIAD
- Staged approach beginning with SIS which can be easily extended to LIS.
 - SIS \Rightarrow LIS \Rightarrow FEBIAD

Th

Ac

Pa

U

Np Pu

Periodic table for the elements (RISP)

Cm

Am

97

Bk

98

Cf Es

99 100 101 102 103

Md

No

Lr

Fm

Surface Ionization Source

 Efficient ionization method for the elements with IP<7 eV (positive ions), mainly for the alkali and alkaline earth metals, and with EA>2 eV (negative ions).

Temperature	1200 - 2300°C
Cavity	L = 30 mm, ID = 3 mm
Cavity Material	Positive : Re (Ta, W) Negative : LaB ₆ , GdB ₆
Heating	Ohmic heating, ~300 W
Plasma density	10 ⁸ -10 ¹⁰ /cm ³
E _e	~0.3 eV
Max. ion current	~1 µA/mm²
Energy spread	<2 eV
ε _{95%} @30kV	10-15 π mm mrad

Surface Ion Source

FEBIAD (plasma) Ion Source

- Purpose : production of gaseous n-rich RI beams
- Modeled in the ISOLDE MK5-type FEBIAD

FEBIAD version-1 (RISP)

	Science Project
Temperature	1500 - 2300°C
Cavity	L = 2-3 cm, Φ = 1-2 cm
Materials	C, Ta, Mo, W
Insulator	Al ₂ O ₃ (BN, BeO)
Cathode heating	Ohmic heating, ~300 W
Operating pressure	10 ⁻⁵ ~ 10 ⁻⁴ mbar
Plasma density	10 ⁸ -10 ¹¹ /cm ³
Plasma potential	70% of Anode Vtg (90-150 V)
E _e (E _{ion})	~10 eV (~0.2 eV)
Ionization efficiency (%)	Ar ~5%, Xe ~14%, Kr ~25%, Sn~45%
ε _{95%} @30kV	15-25 π mm mrad
Extraction Potential	20~50 kV

Resonance Ionization Laser Ion Source (RILIS)

Tempe	rature	1500 - 2200°C			
Cavity (Ta)		L = 3 cm, ID = 3 mmΦ			
Heating		ohmic heating, ~300 W			
Ion cur	rrent density	100 nA/mm ² @20-60 kV			
Ionization efficiency		Sn 22%, Al 13%, Ni 3%, Be 3%			
ε _{95%} @30kV		10-15 π mm mrad			
	Ti:Sa Laser (4 ea)	 wavelength 700-1000 nm (5 W) rep. rate 10 kHz (pulse width 40-70 ns) Radiant Dyes Laser (Germany) 			
Laser	Nd:YAG (1 ea)	 wavelength 532 nm (100 W) rep. rate 10 kHz (pulse width 100 ns) Lee Laser, LDP-200MQG-HP (USA) 			

17

Simple model 0.45 0.40 0.35 Ionization Efficiency 0.30 0.25 0.20 0.15 0.10 - f=10 kHz - f=15 kHz - f=20 kHz 0.05 f=30 kHz 0.00 50 30 40 60 70 Tube Length (L) (mm)

Reference cell for the off-line ionization test

Laser System installed at RISP

Current Status

- The Laser system for RILIS was installed.
- The reference cell was fabricated in collaboration with Mainz Univ. (Prof. Wendt)
- The ionization scheme for tin will be tested using the reference cell in time.

Ionization efficiency of Sn as a function of laser frequency & tube length

Design of Pre-separator

Extraction	Voltage	Max 50 kV, 1+ charge state				
Βρ		0.37 Tm				
Beam size		±2 mm				
Angular ad	cceptance	±15 mrad				
Dipole	Bending angle	90°				
	Bending radius	1.2 m				
	Gap	8 cm				
	Pole face angle: entrance, exit	35°				
Electro Sta	atic Quadrupole	Φ120 mm, Length 20-40-20 cm Gap 10 cm				
Mass Disp	ersion	1.86 cm/%				
Slit Positio	on after Dipole	1.5 m				
Slit Width		±3 mm for reject mass diff. 300				

* All components are electrostatic module except for dipole

RFQ-Cooler

- **Objective**: Securing the resolution of HRMS by enhancing the beam quality
- Method: international collaboration between LPC-CAEN and RISP
- Acceptibility
 - beam current: up to 1 μA
 - transverse emittance: > 30 π mm mrad @ 20 keV
 - energy spread: > 10 eV

	Requirements	Results	Fulfillment
Transmission	20 % for m ≈ 12 u 40 % for m ≈ 40 u 60 % for m ≥ 90 u	? T > 70% T > 70%	ОК
Energy spread	≤ 1eV (FWHM)	1.65 eV @ 50nA	
Emittance	≤ 3 π.mm.mrad	< 3 π.mm.mrad	ОК

RFQ-cooler for SPIRAL-2

Test with ³⁹K and ¹³³Cs

HRMS (High-Resolution Mass Separator)

transmission

 132 Sb ~ 4 %

intensity)

not considered

~93 % for ¹³²Sn contamination of

(assuming same

systematic instability

Parameters

- acceptable mass range: 6<A<240
- KE < 50 keV (Δ E \sim 1 eV)
- acceptance : 3π mm mrad
- QQSQ-DMD-QSQQ symmetry (modelled on HRS@SPIRAL2)
- dispersion $D_m \sim 34 \text{ cm/\%}$
- $R_W(R_S) \sim 10,000 (34,000)$
- transmission: >90% for ¹³²Sn

0.2 y

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

-0.6

-0.4

¹³²In

Code: MOCADI

1 mm

-0

0.2

-0.2

132Sn 132Sh 132Te

132Ba

132Xe

D 4

0.6

x (cm)

- Collaboration with CENBG for RISP HRMS (duplication of HRS@SPIRAL2)
- Main differences between the HRMS and HRS (due to the level of activity)
 - not modular system : no quick connection and disconnection systems modules
 - support frames may be different
 - diagnostics may be different...
 - slit system
 - no double valve on diagnostics
- A completion of the Research Agreement is in the final stage.
 - about 2M€ is allocated for HRMS
 - development schedule
 - 9/2014 ~ 6/2015 : technical & engineering design
 - 1/2015 ~ 9/2016 : fabrication
 - 4/2016 ~ 9/2017 : installation at CENBG
 - 10/2017 \sim 6/2018 : commissioning with stable beam
 - 7/2018 ~ 6/2019 : transfer & integration to/at RISP
 - 7/2019 ~ : commissioning with stable & RI beams

Charge Breeder

- Purpose : charge state increase (1+→n+) of ions for efficient acceleration at post-accelerator
- Strategy for charge breeder R&D
 - upgrade & introduction of ECR-CB at DIAC/KAERI (old TRIAC/KEK)
 - development of EBIS-type CB (in Accelerator Division)

DIAC (old-TRIAC) layout at KAERI site

23

Cross-sectional view and specifications of the 18 GHz ECR-CB. (TRIAC/KEK \rightarrow DIAC/KAERI)

A/q separator combined with beam lines of ECR and EBIS CBs

Incident beam conditions

- ECR-CB: **60** and **100** π mm mrad at *x* and *y*
- EBIS-CB: **25** π mm mrad at both *x* and *y*

Position distributions at F2 (5th order calculations)

- Clear mass separation of $m/\Delta m = 300$ with small tail of the position distribution.
- Clear elimination of the high order aberrations, taking into account the aberrations of the CB beam lines

Beam envelopes of A/q separator with EBIS-CB beam line

ISOL test facility (off-line)

25

ISOL Laboratory (for Test Facility)

Lab. Layout of Experimental Systems Div.

Beam diagnostics (I)

(A) Beam Current Monitor (BCM)

- location
 - before & after main components
 - after bending
- type
 - Faraday cup
 - ???

B Beam Profile Monitor (BPM)

- location
 - before & after main components & benders
- type
 - Profile grid (at high-rad area)
 - Wire scanner
 - SE-BPM (for low-intensity beam)

© RI ID Station

- two stations for (1+) & (n+) RI beams
- used to :
 - control the production of target via the 1+ source and the separator
 - control the good behaviour of the charge breeder
 - control the identity of the ions injected into SCL3

Beam diagnostics (II)

at high-rad area

Beam diagnostics chamber at the off-line ISOL facility

Oscillating wire scanner & Allison-type Emittance scanner (D-Pace)

FIG. 3. Operation principle of a foil-based secondary emission monitor.

<u>SE-</u> BPM

ISOL Target Room Shielding (35 kW)

Dose limits

- public area : $0.25 \ \mu Sv/h$
- control area : 5 μ Sv/h
- Concrete composition (weight fraction, %)
 - H 0.55, O 49.9, Na 1.72, Mg 0.24, Al 4.6, Si 31.51, K 1.92, Ca 8.32, Fe 1.24)
 - $\rho \sim 2.3 \text{ g/cm}^3$
- Flux to dose conversion:
 - ICRP-74 (1996) ambient dose equivalent

	Formerd	Si	de	Declaword	Deef	Bottom	
	гогwага	Left	Right	Dackwaru	K00I	(soil/water)	
Shield (cm)	405	300	345	270	325	345	
Dose (µSv/h)	4.43	3.36	3.77	2.68	4.02	4.53	

ISOL target activation (10 kW)

30

Cost breakdown/budget profile & manpower

Rare Iso Science	tope Project

Item	2012	2013	2014	2015	2016	2017	2018	2019	kUS\$
Target/IS/FE/Pre-separator	160	540	1180	1650	1870	1100	900	700	8100
TIS/FE test facility (off-line)	30	200	830	410	220	160	150	-	2000
RF-cooler & HRMS	50	250	1240	1300	610	350	300	300	4400
Beam transport & diagnostics	30	180	1030	1150	630	370	260	250	3900
Charge breeder & A/q separator	20	120	660	840	550	200	160	150	2700
TIS remote handling system & hot cell	-	90	300	660	510	480	260	100	2400
ISOL control & radiation safety	20	130	480	720	1000	600	420	330	3700
sub-total	310	1510	5720	6730	5390	3260	2450	1830	27 200
Demonstral	5	5	8 (6)	11	13	15	15	16	
Personnel	Welcome foreign experts with open arms!								

Manpower/collaborations

	32
RI	SP
Rare Isoto Science P	pe roject

Function		affiliation					
		ISOL team	other team	other institutes			
Target/Ion Source	ISOL target development	• Hwang, Jeong		• CERN (ISOLDE)			
Station	• Ion source development	• Woo, P-1	• Yun (0.5)				
RI Beam Separation System	Pre-separator	• Kang					
	• RF-cooler		• Park (0.5)	• LPC-CAEN/GANIL			
	• HRMS	• Kang		• CENBG			
	• CB-ECR	• Seo		• KAERI (FRC)			
	• CB-EBIS		• Hahn (0.3)				
	• A/q separator	• Tshoo					
	• RI beam transport line	• Kang, P-2		• KAERI (KOMAC)/TRIUMF			
	• RI ID station	• Kang, C-1		• LPC-CAEN/GANIL			
	Beam diagnostics	• Woo		• CERN/GANIL			
Control & Safety System	ISOL control system	• Lee, C-1		• INFN (SPES)			
	• TIS remote handling system	• Lee, C-1		• CERN/INFN			
	• Safety & utility	• Lee, C-2		• GANIL/CERN			
ISOL Test Facility	Off-line test facility	• Seo					
	• Test of ion sources & beam monitoring devices	• Woo, C-3					
Cyclotron	• Procurement of Cylotron (70 MeV, 0.75 mA)		• Kim (1.0)				
		• total 7 (+10)					

Summary

- ISOL project at RISP is a challenging project in this field, and as a newcomer partly we are entering the engineering design stage.
- The R&D of ISOL target chemistry is practically ongoing, and the off-line ISOL test facility with newly developed ion sources will be in operation from the early months of next year.
- The beam dynamics design of ISOL beam transport line is ongoing with highorder simulations of some critical components.
- In order to get first exotic beam from ISOL system in late 2020,
 - (well-experienced) manpower should be reinforced especially in the fields of ion beam physics/engineering and control/safety system.
 - extensive & active collaboration with advanced (foreign) institutes seems to be essential, in particular, for the successful development of RF-cooler, HRMS, charge breeder and A/q separator.
 - completion of ISOL building and general services should be on schedule (not later than 3rd quarter of 2018).

Acknowledgements B.H. Kang, C.S. Seo, J.H. Lee, K. Tshoo, W. Hwang, J.W. Jeong Y.-H. Park, J.W. Yoon, D.Y. Jang, G.D. Kim, Y.K. Kim

Thank you for Your attention !