Study of High Energy Positron Annihilation in GEANT4

Naruhiro Chikuma

The University of Tokyo

CERN Summer Student (Supervisor: Vladimir Ivanchenko)

Outline

- Introductioin
- Modification of High Energy Process in GEANT4
- Validation of GEANT4 cross-section versus theory
- Simulation in a simple setup

Introduction

- High energy positron annihilation

 In high energy physics, incident e⁺ would annihilate with atomic e⁻ by the following processes^[1].
 - these processes may provide a background to the interaction region of linear collider(for example, CLIC^[2]) or to search for new physics at LHC(this work).

Processes

$$e^+e^-$$

 $\rightarrow \gamma\gamma$
 $\rightarrow \mu^+\mu^-$
 $\rightarrow \pi^+\pi^-$
 $\rightarrow \pi^+\pi^-\pi^0$
 $\rightarrow K^+K^-$
 $\rightarrow K_LK_S$
 $\rightarrow \eta\gamma$
 $\rightarrow \pi^0\gamma$

Modification of High Energy Process in GEANT4

Problem in EmCalculator

• Extract cross sections of positron annihilation to 2γ , $\mu^+\mu^-$, or hadrons($\pi^+\pi^-$, $\pi^+\pi^-\pi^0$, K^+K^- , etc...) in GEANT4

G4EmCalculator* emCal;

emCal.**ComputeCrossSectionPerAtom**(energy,particle,processName, Z,A,cut)

- processName = "annihil" ⇒ work
- processName = "AnnihiToMuPair" ⇒ NOT work
- processName = "ee2hadr"

Class

G4EmCalculator

Classes for each process

 \Rightarrow NOT work

G4eplusAnnihilation G4AnnihiToMuPair G4eeToHadrons

Modification of EmCalculator

- The reason why "AnnihiToMuPair" did not work:
 - Could NOT find the process by the name "AnnihiToMuPair"
 - "AnnihiToMuPair" is NOT included in G4VEmProcess
 - ⇒Create new function to find this process in EmCalculator

G4eeToHadrons processes

- Mistake in scale between CM and Lab
 - Made a inline function "LabToCM"

Changed incident e⁺ energy into CM scale, and then extract cross section

- Add a proper initialization of G4eeToHadronsModel
 Here define cross section
- Clean up the codes
 - Remove unnecessary variables
 - Fix the low energy limit as the process threshold

Classes for hadrons processes

G4eeToHadrons G4eeToHadronsModel G4eeToHadronsMultiModel G4Vee2hadrons

Classes for each process

G4eeToTwoPiModel G4eeTo3PiModel G4ee2KChargedModel G4ee2KNeutralModel G4eeToPGammaModel

Validation of GEANT4 cross-section

CrossSections in GEANT4

- Extract cross sections by using a example, TestEm6
- Calculate by theory^[3]

•
$$e^+e^- \rightarrow \gamma\gamma$$
:
 $\sigma(Z, E) = \frac{Z\pi r_e^2}{\gamma+1} \left[\frac{\gamma^2 + 4\gamma + 1}{\gamma^2 - 1} \ln\left(\gamma + \sqrt{\gamma^2 - 1}\right) - \frac{\gamma + 3}{\sqrt{\gamma^2 - 1}} \right]$
E:total energy of the incident positron in laboratory frame,
 $\gamma = E/m_e, r_e$:classical electron radius
• $e^+e^- \rightarrow \mu^+\mu^-$:
 $\sigma = \frac{\pi r_\mu^2}{3} \xi \left(1 + \frac{\xi}{2} \right) \sqrt{1 - \xi}$
 $r_\mu = r_e m_e/m_\mu, \xi = E_{th}/E, E_{th} = 2m_\mu^2/m_e - m_e$

 Make histograms for each cross section and theoretical calculations

Comparison of e+ Annihilation Processes(totcrsPerAtom)

Comparison of EM Processes(totcrsPerVolume)

R : ratio(ee2hadr/AnnihiToMuPair)

Simulation in a simple setup

Simple Simulation

- Made a cubic box target (variable material and size)
- Irradiate e^+ (variable energy, 10^7 events)
- Count the number of annihilation processes

Summary

Modification and validation

- Electromagnetic/high-energy sub-library has been improved.
- TestEm6 has been updated.
- G4EmCalculator has been updated.
 ⇒Everything pass STT validation.
- GEANT4 cross-section is validated up to around 1 TeV.
 - other models are needed for higher energy than 1 TeV. (including decay into 4 pions, ρ' meson, ...)
 - ⇒high-energy sub-library is included into private patch to CMSSW.
- Simulation in simple setup
- High energy positron may annihilate into "muon pair" or "hadrons" by the probability of 10⁻⁶ ∼ 10⁻⁵.
 - these may become background in a high rate event.
- These high energy processes happen for \sim 10cm in Si.
 - these process may happen within tracker.

References

[1] Geant4 simulation of production and interaction of muons. A.G. Bogdanov, H. Burkhardt, V.N. Ivanchenko et al.
2006. 7pp. Published in IEEE Trans. Nucl. Sci. 53 (2): 513-519, 2006.

[2] CLIC Conceptual Design Report. M. Aicheler, et al. CERN, 2012. – 841 p.

[3] Physics Reference Manual, Version: geant4 10.0(6 December 2013)

Average Distance for Annihilation

