The ATLAS New Small Wheel Upgrade Project

Stephanie Zimmermann
University Freiburg, Germany
ATLAS Collaboration

• Introduction: LHC and ATLAS Upgrade Program
• The Present Small Wheel Detectors
• Limitations at High Rate and Impact on Physics – Why a New Small Wheel?
• New Small Wheel Chambers and Detector Technologies. Chamber Construction Challenges
• Alignment System, Mechanical Challenges
• Conclusion

Many thanks to all my colleagues who provided material!
The present ATLAS detector was designed for a nominal luminosity of $10^{34} \text{ s}^{-1} \text{ cm}^{-2}$ and a expected lifetime/period of operation of 10 years.

Discover of the Higgs particle in 2012:
LHC planned to run until at least 2028 – 2030, with a substantial luminosity upgrade: The High Luminosity LHC (HL-LHC)

European Strategy for Particle Physics
(autumn 2012)

“The discovery of the Higgs boson is the start of a major program of work to measure this particle’s properties with the highest possible precision for testing the validity of the Standard Model and to search for further new physics at the energy frontier. The LHC is in a unique position to pursue this program.”

High statistics High accuracy
LHC and ATLAS Upgrade Roadmap

2009
LHC startup, 900 GeV

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2030?

now

ATLAS:

• Phase-0 Upgrade: Consolidation + Insertable B-Layer (IBL) in LS1
• Phase-1 Upgrade: New Small Wheels, LAR Calo + TDAQ upgrade, Fast Track Trig.
• Phase-2 Upgrade: New Inner Tracker
New Small Wheels will replace the present Innermost endcap station of the Muon Spectrometer
Present Muon Detectors (Small Wheel)
Present Muon Detectors (Small Wheel)

Present Muon Spectrometer Technologies: **CSC, MDT** (Tracking) **RPC, TGC** (Triggering)

Monitored Drift Tubes:
- gas filled with Ar:CO$_2$ @ 3bar abs
- 3 cm diameter
- tube resolution \leq 80 μm, track resolution/station \leq 50 μm
- Rate capability limited by 1 dimensional readout
- Optical rays for monitoring deformation and displacement

Cathode Strip Chambers:
- Innermost part of the inner endcap station
- Multi-wire proportional chambers, operated at 1 bar (Ar:CO$_2$),
- segmented cathode, strips perpendicular to wire direction
- resolution/plane: 60μm from **strip charge distribution**
Thin Gap Chambers:
- Multi-Wire proportional chambers with very small gap size
- Cathode – wire distance smaller than distance between wires
- Operating gas: n-pentane + CO₂
- Operated in quasi saturated mode
- Fast readout, small intrinsic time jitter (<~1.5ns), high efficiency
- Provide also 2nd coordinate measurements for MDTs, main purpose in the present Small Wheel!
Limitations at High Rate
Limitations at High Luminosity

Resolution and efficiency degradation

Rate limit of 3cm MDTs reached at ~300 kHz/tube

- Degradation of tube and segment efficiency, due to dead time from background hits
- Resolution degradation
 - Due to gain loss caused by space charge
 - Due to space charge fluctuations
Expected Rates at High Luminosity

Expected hit rates at LHC design lumi.

- At luminosities exceeding \(\sim 2 \times 10^{34} \text{s}^{-1} \text{cm}^{-2} \) and even more at HL-LHC rates (\(5 \times 10^{34} \text{s}^{-1} \text{cm}^{-2}\)) MDT rate limit is exceeded for a large part of the present Small Wheel
- Limit for CSCs is reached even earlier, due to only 4 detection layers (instead of 6 for MDT)
Fake single muon L1 trigger rate

Run-1 trigger status:
• Single muon L1 trigger rate dominated by fake events

Analyzing recorded hits offline

All L1_MU11 ($p_t > 11$ GeV) L1 triggers

Reconstructed tracks with $p_t > 3$ GeV

Reconstructed tracks with $p_t > 10$ GeV

Fake track rate is ~9 times higher than true high-p_t single muon tracks, well exceeding the available L1 rate budget of 20 kHz for single muon trigger !!

<table>
<thead>
<tr>
<th>LV1 single Muon threshold (GeV)</th>
<th>LV1 rate (kHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T > 20$ GeV</td>
<td>60 +- 11</td>
</tr>
<tr>
<td>$p_T > 40$ GeV</td>
<td>29 +- 5</td>
</tr>
</tbody>
</table>
Cause of the fake L1_MU tracks

Present Muon L1 trigger in the endcap relies on the Big Wheel station (Endcap Middle, EM) only
- Calculating a track angle/vector and extrapolating to IP

- Can not distinguish cases A (real high-pt track), B (low-pt particle created in the toroid area) and C (multiple scattering) in figure a)

- Can filter out fake tracks by being able to reconstruct track vector/direction also in the EI endcap inner station → New Small Wheel, extend L1 trigger coverage to $\eta = 2.6$ with angular resolution of 1 mrad
Importance of L1_MU rate and consequence of high fake rate

Losing low p_t single lepton trigger: Example Higgs production + leptonic decay

- Higgs production in pp collisions mainly from gg fusion $\rightarrow p_t$ of the Higgs relatively low
- Raising the p_t threshold for single lepton from 20 to ≥ 40 GeV would lead to loss of most of the signal
Importance of L1_MU rate and consequence of high fake rate

- Few 100 fb$^{-1}$ integrated luminosity: Sufficient statistics for VBF produced Higgs events despite low cross section.

 Example $H(VBF) \rightarrow \tau^+\tau^-$ ($\sqrt{s} = 14$ TeV): 60% of leading muons have $p_T > 25$ GeV, whereas only 28% have >40 GeV

- Few 100 fb$^{-1}$ integrated luminosity: Precise determination of Higgs couplings (to W,Z, fermions) using the production channels like Higgs-Strahlung from W: $pp \rightarrow WH$

 - Use leptons from W decay as trigger

 - Spectrum, for $WH \rightarrow \mu\nu bb$, harder than for inclusive $H \rightarrow WW^*$, fraction of low-p_T leptons nevertheless significant
Importance of L1_MU rate and consequence of high fake rate

• **SUSY searches**: Leptons in many cases produced through cascade decays, with kinematic distribution of the final particles depending on the mass relation of the particles in the decay and the couplings

 → Raising the p_t threshold for single leptons (as well as for jets, $E_{T,\text{miss}}$) results in a reduction in sensitivity and accessible parameter space of SUSY/BDSM models ...

![Graph showing sensitivity ratio between 35 and 25 GeV lepton p_t threshold for a example SUSY decay chain](image)

Sensitivity ratio between 35 and 25 GeV lepton p_t threshold for a example SUSY decay chain

Sensitivity mostly lost for 35 GeV instead of 25 GeV threshold ...
Importance of high-quality tracking

Degradation in tracking efficiency and resolution is most relevant for high p_t muons (> 100 GeV):

- Momentum resolution in this range primarily determined by the Muon Spectrometer
- Precise measurement of the muon momentum requires track segments to be present in all 3 Muon stations to allow a sagitta measurements
- Impact of reduced efficiency in particular for searches for high mass Z', W', also for the pseudo-scalar Higgs in super-symmetric models, decaying into muons

Simulated events in the Small Wheel using the over-layer technique to extrapolate from measured data:
Loss in Z' reconstruction efficiency clearly visible!

$$L = 0.3 \times 10^{34}$$
$$L = 3 \times 10^{34}$$
$$L = 5 \times 10^{34}$$

Z' → $\mu\mu$ simulation
Specifications and Requirements of the New Small Wheels

• Compatibility with the existing tracking detectors and endcap alignment system
 → precision coordinate of all chambers parallel to drift tubes of EM and EO stations to within 2 mrad
 → coverage: |\(\eta\)| > 1.3 (minimum size of chambers)
 → same segmentation into 16 pie-shaped sectors as the present Small Wheel

• Momentum resolution: better than 15 % up to p\(_{t}\) = 1 TeV
• Single plane resolution: 100\(\mu\)m, independent from track angle
• Track segment reconstruction: 50 \(\mu\)m
• Track segment efficiency: \(\geq 97\% \) @ p\(_{t}\) > 10 GeV
• Online angular resolution (trig): \(\leq 1\) mrad
• Spatial resolution 2\(^{nd}\) coordinate: \(\sim\)cm, from stereo strips or wires
• Hit rate capability: 15 kHz/cm\(^2\) (meeting perform. requ.)
• Accumulated charge without ageing: 1 C/cm\(^2\) (3000 fb\(^{-1}\) w/o degradation)

• Redundancy of tracking and triggering
 → provision against failure in a detector plane or element, limited accessibility

July 11 2014

S. Zimmermann, CERN Detector Seminar
New Small Wheels: Detectors

- 2 detector technologies for NSW chambers: small strip Thin Gap Chambers (sTGC) and MicroMegas (MM)
- 4 + 4 + 4 + 4 detection planes

sTGC – Primary trigger detector
- Outside → longer lever arm
- Track vector with angular resolution < 1 mrad
- Good space resolution --- contribute to resolution offline track reconstruction, redundant tracking

MM – Primary tracking detector
- 500 µm strip pitch – very good position resolution of 100 µm independent of track angle, excellent track separation capabilities
- Provide independent track vector – redundant triggering
New Small Wheels: Layout

IP side: Small sectors, covering area from $r = 90$ cm to 445 cm from the IP

Non-IP side: Large sectors, covering area from $r = 92$ cm to 465 cm from the IP

Overlap between Small and Large sectors!

Sectors: Package of sTGC and MicroMegas “wedges” + central spacer frame

(Chamber segmentation not shown)
New Small Wheels: Layout

Wedge Segmentation – MicroMegas:

- Radial segmentation in 2 chambers per wedge – decided based on handability
- SM1: Italy/INFN
- SM2: Germany – Munich, Freiburg, Wurzburg, Mainz
- LM1: Saclay
- LM2: Thessaloniki + Dubna

Small sector modules

Large sector modules
New Small Wheels: Layout

Wedge Segmentation – sTGC:

Small sector modules

Radial segmentation in 3 modules per wedge

Construction sites:

- Canada (TRIUMF, Carleton, McGill clusters)
- China (Shandong)
- Chile (PUC Santiago, Valparaiso)
- Israel (Weizmann, Tel Aviv, Technion)

Large sector modules
NSW Detector Chambers
sTGC: Principle of Operation

- 50µm gold-plates tungsten wires, spaced 1.8mm apart,
- Wires sandwiched between 2 cathode planes 1.4 mm from the wires
- Cathode surface resistivity $100 \, \text{k}\Omega/\text{m}^2$ reached by graphite coating
- Strip or pad layer, strip pitch: 3.2 mm (much smaller than previous TGCs → sTGC)
- Trigger: Coincidence of pad signals define Region of Interests (RoI), selected strip information sent to trigger processor for precision position calculation
- Track position reconstruction from strip charge centroid, 2\text{nd} coordinate from wire readout
sTGC: Performance

- Space charge itself is not a limiting factor for TGC chambers due to the small gap size and the quasi saturated operation mode;
- Limitations stem from the resistive coating of the cathode for large area detectors for locations far away from the GND contact: reduction of the effective operating voltage → lower resistivity was a main focus of the sTGC R&D

Resolution vs. strip pitch (charge centroid method) – Testbeam data

Resolution of 60µm for perpendicular, ~140µm for tracks inclined by 30° achieved with 3.2 mm strip pitch. Single plane eff. essentially unaffected until 17kHz/cm²
Cluster signal arrival time

Small sTGC gas gap and strong electric drift field ensure good timing properties:
- Drift time for most electrons < 25ns
- High gas amplification ensures high efficiency even for single clusters

95% events contained within 25ns

Ok for BCID identification (Pad coincidence logic)

Note: Also require fast strip charge centroid information for online precision position determination

Conventional ADCs to slow, resolved by the custom VMM frontend ADC which implements a Flash ADC for transmitting the pulse charge to the centroid finder (trigger processor)
Micro-Mesh Gaseous Detectors:
- Planar geometry
- Simple components: cathode, readout PCBs, mesh
- Large area can be achieved fairly simply and with rel. cheap cost
- Industrialization (PCB fabrication)
- Excellent high rate capability

- Small amplification gap (100 – 150 µm) → space charge effects very limited
- Segmentation of readout strips → limit “dead” time
Weak point of classical MicroMegas: vulnerability to sparking when number of electrons in the avalanche reaches few 10^7 electrons

- Large deadtime (HV break down)
- Potential risk of damage to the detector and/or readout electronics

NSW MicroMegas: Resistive strip layer added on top of readout strips, separated by a thin insulation layer

- Signals capacitively coupled to readout strips
- Small fraction of the signal height lost
- Can operate chamber at higher gain since readout electrodes are protected

→ Reduction in spark intensity by 3 orders of magnitude!
Characteristics & operating parameters:

- Operating gas: Ar:CO$_2$
- Drift gap: 5 mm
- HV (resistive strips): 550 V (GND on mesh)
- Drift field: 600 V/cm

Per quadruplet:
- 4 drift gaps, symmetric configuration to compensate forces from mesh tension
- 2 layers eta strips
- 2 layers stereo strips (rotated by 1.5°)
- Required mechanical precision: 40µm
MicroMegas: Performance

Intensive test beam program in the last years resulted in well understood performance

- Perpendicular tracks: resolution < 100 μm from charge centroid
- Global efficiency 98-99%, consistent with dead area from pillars supporting the mesh

\[
\text{\(T1-T2 \)} \\
\sigma = 75 \, \mu m
\]

\[
\text{\(T3-T4 \)} \\
\sigma = 73 \, \mu m
\]

\[
\text{\(T5-T6 \)} \\
\sigma = 73 \, \mu m
\]

\[
\text{\(T7-T8 \)} \\
\sigma = 69 \, \mu m
\]

M. Iodice, Zaragosa 2013

\(\mu \) TPC mode for inclined tracks with \(\alpha > 10^\circ \): use time information from hit arrival, reconstruct z coordinate for each x

\(\rightarrow \) Combined resolution meets < 100μm requ.
40µm accuracy on knowing position of every active detector element is not a difficulty for strips or pads within a PCB But it is a very big challenge for chamber construction + assembly !!
sTGC Construction

- Strip panels sucked flat by vacuum on a granite table, honeycomb sheet and frame glued to it \(\rightarrow\) rigidity
- Positioning of strip panels using brass insert set into the strip PCBs and machined in the same production step as the strips in (PCB) industry
- Reference insert pushed against stainless steel reference tool mounted on the granite table \(\rightarrow\) precise stacking
sTGC Construction

Joined exercise of Israeli and Canadian teams building 60x40 cm prototype in spring

sTGC construction follows the same method as successfully used for the ~3500 TGC of the present Muon system ...
Surprises and results (module -1 prototype, 1.3 x 1.1m):

- Mechanical tolerances within layers met
- Deviation in alignment between layers: Brass reference inserts not machined in one go together with strips by mistake
- Problems with cleaning of boards --- non dry machining of pads in industry lead to many shorts and high resistivity connection to GND

Module -1 tested @ FNAL test beam in May

Data currently being analysed, preliminary resolution per plane 70 – 100 µm, meeting specification
Infrastructure on production tooling set up well advanced in all 4 sites:

- **Clean room @ Carleton (Canada)**
- **Cathode spraying @ Weizmann**
- **Lab and first granite table at PUC Santiago (Chile)**
- **Cosmic ray test facility at Shandong Univ. (China)**

Ready to start module-0 in autumn!
MSW prototype (1.2x0.5m) completed @ CERN, chamber will be installed in ATLAS before data taking in 2015

Positioning of Al frames and honeycomb

Panel Flatness/Planarity measurements (Laser based)

Lessons learned

- Deformation of the drift panel visible – rms <~ 100 µm, deformation will improve after module assembly due to interconnections
- Local deviation → due to imperfection of the used stiff back tool
MicroMegas Production Site Prep.

Mesh stretching tests in Frascati

Industrial solutions

Final preparations to start module-0 construction after the summer ...

Pavia precision templates for RO board alignment

July 11 2014

S. Zimmermann, CERN Detector Seminar
Alignment System and NSW Mechanics
Requirement of knowing the position of active elements (strips, ...) to within 40µm does not hold only for module construction

→ Need to consider module position in (absolute) space for sagitta measurement and displacements from nominal coordinate

→ Need to consider module deformations

New Small Wheel chamber alignment uses the same technology of the present Muon Spectrometer alignment

- Optical lines with sensors and CCDs, position/displacement reconstruction from optical images of sensor masks

- Projective lines (to IP) are blocked by the endcap toroid → additional precision alignment reference bars to “transfer” optical measurement
New Small Wheel Alignment

- Precision alignment information needed for sTGC and MicroMegas
- 2 sTGC + 2 MM wedges as independent object

More complex alignment system!!

- NSW contains 16 instead of 8 alignment bars per wheel!
New Small Wheel Alignment

Alignment system components and principle remains the same:

- CCD based alignment “sensors” on the alignment bars “look” at light sources and masks mounted on the chambers/quadruplet
- Reconstruction of chamber displacement from image distortion and magnification

Number of lines needed for monitoring chamber distortions depend on deformation modes → dedicated “sector test” ongoing at Freiburg with prototype chambers assembled into a dummy sector and put under load/temperature gradients, CMM measurement to validate FEM model
Support Structure and JD Disk

- Support structure of the New Small Wheels is an integral part of the project
- Combines support structure for the chambers, radiation shielding (plug + cone), magnetic flux return for ATLAS solenoid and barrel toroid
- Full Small Wheel (140 tons) rests on the “JD feet”
Challenges for NSW Structure

- Total weight → constraint by the max. load of the crane, and range limitation for using single crane in UX15: < 140 tons
 - present SW: ~110t → 120t, plus lifting tool
- Delicate centre of gravity
- Need for increase in stiffness (heavier weight)
- Instability of the sTGC wedge positioning
- Lack of space for independent kinematic mounts of sTGC and MM sectors
- Interference of alignment lines with SW + JD feet

Can be solved by a new JD disk with integrated support structure
NSW new Mechanical Structure

New design, currently under review and approval:

- JD disk integrated with New Small Wheel support structure (bolted together) → increased stiffness
- Disk thickness reduced from 80 to 50 (40) mm
- Alignment bars integrated with “spokes” supports
- NSW assembly can start independent from retrieval of present endcap from the cavern at the start of LS2
Mechanical engineering challenge ...

FEM calculation of deformation when loaded with the detectors

- **50mm thick disk**
 - max. bending: 23.4 mm

- **40mm thick disk**
 - max. bending: 23.7 mm

Forces and force distribution
Outlook and Conclusions
Detector Activities schedule...

<table>
<thead>
<tr>
<th>Year</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Schedule: MicroMegas

- **2014/15 are crucial for the project**
 - Module-0 construction after the summer
 - Series production from early summer next year

Schedule: sTGC

- Milestone: Design Reviews end of this month

July 11 2014 S. Zimmermann, CERN Detector Seminar
• Detectors: R&D phase completed, moving into series production
• Electronics: Prototype modules and submission of first chip version for most components under way
• At about the 30% of the project, will stay challenging!
Conclusions

• The ATLAS NSW Upgrade will enable the Muon Spectrometer to retain its excellent performance also beyond design luminosity and for the HL-LHC phase.

• Deployment of a new detector technology, MicroMegas, for the first time for a very large scale detector and with large area chambers.

• Detector construction is not the only challenge: Alignment, Mechanics, Electronics are equally crucial and highly complex areas needed for a success.

• 2nd half of this year and 2015 will be crucial:
 – Module-0 production
 – Transition to series production
 – First prototypes for many of the electronics components.
New Small Wheel Upgrade project is team effort from groups from almost all continents!
Thank You!