HELIUM3 GAS SYSTEM FOR CAST

Nuno Alexandre ELIAS
Technical University of Lisbon (UTL)
Laboratory of Instrumentation and Experimental Physics (LIP)

Supervisors: Tapio Niinikoski (CERN), Paula Bordalo (LIP)
How to extend \textit{AXION} rest mass search?

- **CAST Phase I with vacuum**
 - $g_{agg} \leq 8.8 \times 10^{-11} \text{GeV}^{-1}$ for $m_a < 0.02 \text{ eV}$

- **To restore lost coherence \rightarrow buffer gas**
 - $P_{a\rightarrow\gamma} = \left(\frac{B g_{a\gamma}}{2} \right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L} - 2e^{-\Gamma L/2} \cos(qL) \right]$

- Which gas, at 1.8 K?
 - ^4He, $P_{\text{sat}} = 16.4 \text{ mbar} \rightarrow m_a < 0.43 \text{ eV}$
 - ^3He, $P_{\text{sat}} = 135.58 \text{ mbar} \rightarrow m_a < 1.23 \text{ eV}$

- How to scan?
 - Maximize discovery potential within limited time frame

 Overlapping the axion mass distribution at FWHM between two consecutive density settings

 Result: increasing step size from 0.08 to 0.12 mbar (at 1.8K)
Challenge

HELUM-3 Gas System

Gas Metering
- Stability, Accuracy, Reproducibility
 - \(<0.01\) mbar stability, \(<1\) step reproducibility
- Thermally controlled calibrated volumes
- Metrological Pressure Measurement
- Homogeneous thermalization with superfluid Helium
- Computational Fluid Dynamics modeling
- Amount of gas measured with better than 60 ppm

Gas Confinement (X-ray Windows)
- High X-ray transmission (Thin)
 - \(15\) μm polypropylene
 - \(~88\%\), PP15 \(>80\%\) (>2keV), \(95\%\) @ 4.2keV
- Robust (Strong-back mesh)
 - \(\varnothing 5.2\)mm, \(0.3\)mm, ↓\(5\)mm
- Hermeticity tested \(<1x10^{-7}\) mbarl\(\cdot\)s\(^{-1}\)
- Pressure Tested
 - All cycled at \(1\) bar (prototype holds 3.5 bar)
- Regularly baked-out to avoid cryopumping
Challenge

- **Superconducting magnet resistive transition (Quench)**
 - Rapid temperature rise → Pressure increase (max: 2.9 bar)
 - Goal: Minimize Pressure reach
 - Sub- atmospheric ($P_{\text{max}}/P_0 < 8$)
 - Protection of the cold X-ray windows
- **Requires:**
 - Fast Quench Detection/ Fast Gas Extraction
 - High Flow Conductance
 - Large Expansion Volume (450 litres)

- **Absence of spontaneous thermo-acoustic oscillations**
 - Initial CAST setup: Observed oscillations
 - Oscillations reduce axion-photon conversion probability
 - Investigation of driving parameters
 - Numerical Modeling
 - Installation of diagnosing tools
 - Installation of active and passive measures for elimination

Fast Fourier Transform

![Fast Fourier Transform Graph](image)

Miniature Cryogenic Pressure Transducer

SPSC CERN (22APR2008)

Nuno Alexandre ELIAS

UTL / LIP (Portugal)
Schematic drawing

- Storage region
- Metering region
- Axion conversion region
- Expansion region (Recovery)

Technical Design Report [CERN-SPSC-2006-029]

Requirements:
- Avoid loss of 3He
- Absence of TAO’s
- Precision/Reproducibility
- Multiple stepping / Ramping of density

Constraints:
- Limited space
- Weight restrictions
- Custom components
- Magnet movement
- Instrumentation
Construction

- MFB, integration model
- MRB, integration model
- Metering region integration model
Construction

- MFB, intervention
- MRB, intervention
- Gas metering panel

SPSC - CAST STATUS REVIEW

HELUM-3 Gas System

SPSC CERN (22APR2008)

Nuno Alexandre ELIAS
UTL / LIP (Portugal)

Construction

- Installation of Expansion Volume
- Liquid Nitrogen purification trap
Storage Region

- Cryogenic needle valve
8 Modes of operation
102 Signals with large variety
Flexible operation
Easy user interface/ Remote Operation

PLC for Control & Operation, Supervision + Data Management
Standard control Architecture design
 • UNICOS (UNified Industrial COntrol System) – Reliable + CERN support
 • + Cryogenics dynamics simulation for pre-commissioning
Based on simultaneous generation of:
 • PLC (Programmable Logic Controller) + UPS (uninterruptible power supply)
 • SCADA (Supervisory Control & Data Acquisition)
 • +diagnosing tools, rapid prototyping and regeneration mechanisms
Benefits from *LHC_logging* for long term archiving
 • + TIMBER (Technical Infrastructure Monitoring) interface tools for data analysis

Supplementary DAQ for sensitive instrumentation and analysis software
Final Remarks

..it was an exhausting but rewarding intervention

- Total cost within the budget
 - some unexpected delays occurred

- System was fully commissioned with 4He in November 2007 and was used for data taking in December

- Since February 2008 the system is fully operational with 3He, and is expected to be essential for the success of the physics runs up to 2010

Special thanks to: CERN Cryolab, CERN Main Workshop, PH-DT1, AT-ECR-CO, AB-CO, Saclay

Axion 'αξιον εστι’
Axion 'is worth it'

Thank you