Introduction to the SM (2)

Yuval Grossman

Cornell

Contact details

- **C** Email: yg73@cornell.edu
- Office while at CERN: 4-1.016

Happy 2nd birthday

Yesterday...

- What is mechanics: $x(t) \Rightarrow L \Rightarrow$ symmetries
	- Q: the implication of $x_1 \rightarrow -3x_2$ and $x_2 \rightarrow -x_1/3$?
	- A: $q_1 = x_1 3x_2$, $q_2 = x_2 + 3x_1$ and we have $V(q_1)$
- What is field theory: $\phi(x,t)$ are the coordinates, not x
- Harmonic oscillator
	- **Leading term in the Taylor expansion**
	- Normal modes and higher order couplings
	- We also expand around the minimum for fields

Today: QM, QFT, PT and Feynman diagrams

Quantum mechanics

What is QM?

- Many ways to formulate QM \bullet
- For example, we promote $x\rightarrow \hat{x}$
- We solve QM if we know the wave function $\psi(x,t)$
- Then we know things like $\langle x \rangle (t)$
- The wave function is mathematically ^a field

The quantum SHO

$$
H = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2} \qquad E_n = (n+1/2)\hbar\omega
$$

• We also like to use

$$
H = (a^{\dagger}a + 1/2)\hbar\omega \qquad a^{(\dagger)} \sim x \pm ip
$$

We call a^\dagger and a creation and annihilation operators

$$
a|n\rangle \propto |n-1\rangle \qquad a^{\dagger}|n\rangle \propto |n+1\rangle
$$

So far this is abstract. What can we do with it?

Fields

- With many DOFs, $a \rightarrow a_i \rightarrow a(k)$
- **And the states**

$$
|n\rangle \to |n_i\rangle \to |n(k)\rangle
$$

• And the energy

$$
(n+1/2)\hbar\omega \to \sum (n_i+1/2)\hbar\omega_i \to \int [n(k)+1/2]\hbar\omega dk
$$

- **O** Just like in mechanics, we expand around the minimum of the fields, and to leading order we have SHOs
- In QFT fields are operators while *^x* and *^t* are not

SHO and photons

I have two questions:

- What is the energy that it takes to excite a SHO by one level?
- What is the energy of the photon?

SHO and photons

I have two questions:

- What is the energy that it takes to excite a SHO by one level?
- What is the energy of the photon?

Same answer

$\hbar\,\omega$

Why the answer to both question is the same? Can welearn anything from it?

What is a particle?

Excitations of SHOs are particles

What about fermions?

- We see how photons are related to SHO
- We can construct ^a fermion SHO

$$
[a, a^{\dagger}] = 1 \rightarrow \{b, b^{\dagger}\} = 1
$$

- No classical analogue since*b*2 $^{2} = 0$
- We can then think of fermionic fields. They cangenerate only one particle in ^a given state

What about mass and couplings?

A SHO give ^a "free" Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu}\phi\right)^2
$$

We can add "potential" terms (without derivatives)

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu}\phi\right)^{2}+m^{2}\phi^{2}
$$

- Here*m* is the mass of the particle. Still free particle
- We can add terms. How do we choose what to add?

What about mass and couplings?

A SHO give ^a "free" Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu}\phi\right)^2
$$

We can add "potential" terms (without derivatives)

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu}\phi\right)^{2}+m^{2}\phi^{2}
$$

- Here*m* is the mass of the particle. Still free particle
- We can add terms. How do we choose what to add?
	- Must be invariant under the symmetries
	- We keep some leading terms (usually, up to ϕ^4 4

A short summary

- **•** Particles are excitations of fields
- The fundeumental Lagrangian is giving in term of fields \bullet
- Our aim is to find it

Perturbation theory

Perturbation theory

$H=H_0+H_1$ *H*₁≪*H*₀

- In many cases pertubation theory is ^a mathematical tool
- There are cases, however, that PT is a better way to describe the physics
- Many times we prefer to work with EV of *H* (why?)
- Yet, at times it is better to work with EV of H_0 (why?)

PT for 2 SHOs

$$
V(x,y) = \frac{kx^2}{2} + \frac{4ky^2}{2} + \alpha x^2 y
$$

- Classically α moves energy between the two modes
- How it goes in QM? \bullet
- Recall the Fermi golden rule \bullet

$$
P \propto |\mathcal{A}|^2 \times \text{P.S.}
$$

If the initial state is $|0,1\rangle$ what transitions are alowed?

PT for 2 SHOs again

$$
V(x, y) = \frac{kx^2}{2} + \frac{4ky^2}{2} + \alpha x^2 y
$$

since it is x 2 ^{2}y all we have is

$$
\mathcal{A} \sim \langle 2, 0 | \alpha x^2 y | 0, 1 \rangle
$$

- a_{y} annihilates the y "particle" and $(a_{x}^{\dagger})^{2}$ creates two x "particles"
- We have

$$
P \propto \alpha^2
$$

It is a "decay" of "particle" y into two x particles \bullet

Even More PT

$$
V' = \alpha x^2 z + \beta xyz \qquad \omega_z = 10, \ \omega_y = 3, \ \omega_x = 1
$$

Calculate $y \rightarrow 3x$ using 2nd order PT

$$
\mathcal{A} \sim \langle 3, 0, 0 | \mathcal{O} | 0, 1, 0 \rangle \qquad \mathcal{O} \sim \sum \frac{\langle 3, 0, 0 | V' | n \rangle \langle n | V' | 0, 1, 0 \rangle}{E_n - E_{0,1,0}}
$$

What intermediate states contribute? only $|1,0,1\rangle$

$$
P \propto \frac{\alpha^2 \beta^2}{64}
$$

What is the meaning of the ¹*/*∆*E*?

Feynman diagrams

Feynman diagrams

- A graphical way to do perturbation theory with fields
- Unlike SHOs before, ^a particle can have any energy aslong as $E\geq m$
- Operators with 3 or more fields generate transitionsbetween states. They give decay and scattering
- Decay rates and scattering cross sections arecalculated using the Golden Rule
- Amplitude are calculated from $\mathcal L$
- Each coupling contributes to the amplitude linearly
- Each internal line corrspnod the the off-shellness of 2nd order perturbation theory and give1*/*(∆*E*)2

$$
\mathcal{L} = \lambda \phi^3 \qquad \qquad \bigwedge \lambda
$$

 ${\cal L}$ $\mathcal{L} = \lambda_1 XYZ + \lambda_2 X^2 Z$ and we look for $Y \to 3X$

Homework: with $\mathcal{L} = \lambda X^2 Z$ estimate $\sigma(2X \to 2X)$