χ² and Goodness of Fit & Likelihood for Parameters

Louis Lyons Imperial College and Oxford

CERN Summer Students
July 2014

Example of χ^2 : Least squares straight line fitting

Data =
$$\{x_i, y_i \pm \sigma_i\}$$

Theory: $y=a+bx$

Statistical issues:

- 1) Is data consistent with straight line?
 (Goodness of Fit)
- 2) What are the gradient and intercept (and their errors (and correlation))? (Parameter Determination)

Will deal with issue 2) first

N.B. 1. Method can be used for other functional forms

e.g.
$$y = a + b/x + c/x^2 +$$

 $y = a + b \sin\theta + c \sin(2\theta) + d \sin(3\theta) +$
 $y = a \exp(-bx)$

N.B. 2 Least squares is not the only method

Criterion:
$$S = \sum_{i} \frac{y_{i}(a,b) - y_{i}(b)^{2}}{An \ error \ for \ each \ jt.}$$

Errors on parameter(s)

In parabolic approx, $\sigma_{\phi} = 1/\sqrt{1/2 \text{ d}^2\text{S}/\text{d}\phi^2}$ (mneumonic)

With more than one param, replace $S(\phi)$ by $S(\phi_1, \phi_2, \phi_{3, \dots})$, and covariance matrix E is given by

$$\mathsf{E}^{-1} = \frac{1}{2} \frac{\partial^2 \mathsf{S}}{\partial \phi_i \partial \phi_i}$$

$$S = S_{max} - 1$$
 contour

Summary of straight line fitting

- Plot data
 Bad points
 Estimate a and b (and errors)
- a and b from formula
- Errors on a' and b
- Cf calculated values with estimated
- Determine S_{min} (using a and b)
- v = n p
- Look up in χ^2 tables
- If probability too small, IGNORE RESULTS
- If probability a "bit" small, scale errors?

Summary of straight line fitting

- Plot data
 - Bad points

Estimate a and b (and errors)

- a and b from formula
- Errors on a' and b
- Cf calculated values with estimated
- Determine S_{min} (using a and b)
- v = n p
- Look up in χ^2 tables

- If probability too small, IGNORE RESULTS
- If probability a "bit" small, scale errors?

Parameter Determination

Goodness of Fit

Properties of χ^2 distribution

...
$$S_{min} \ge \nu + 3\sqrt{2}\nu$$

is LARGE
e.g. $S_{min} = 2200$ for $\nu = 2000$?

Properties of χ^2 distribution, contd.

cf: Area in tails of Gaussian

Goodness of Fit

χ² Very general
 Needs binning
 Not sensitive to sign of deviation

 $\begin{array}{c} \uparrow \\ y \\ \hline \\ \end{array}$

Run Test Not sensitive to mag. of devn.

Kolmogorov- Smirnov

Aslan-Zech

Review: Mike Williams, "How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics" http://arxiv.org/pdf/1006.3019.pdf

Book: D'Agostino and Stephens, "Goodness of Fit techniques"

Goodness of Fit: Kolmogorov-Smirnov

Compares data and model cumulative plots Uses largest discrepancy between dists. Model can be analytic or MC sample

Uses individual data points

Not so sensitive to deviations in tails (so variants of K-S exist)

Not readily extendible to more dimensions

Distribution-free conversion to p; depends on n

(but not when free parameters involved – needs MC)

Goodness of fit: 'Energy' test

Assign +ve charge to data → ; -ve charge to M.C. ☆

Calculate 'electrostatic energy E' of charges

If distributions agree, E ~ 0

If distributions don't overlap, E is positive

Assess significance of magnitude of E by MC

N.B.

- 1) Works in many dimensions
- 2) Needs metric for each variable (make variances similar?)
- 3) $E \sim \Sigma q_i q_j f(\Delta r = |r_i r_j|)$, $f = 1/(\Delta r + \epsilon)$ or $-\ln(\Delta r + \epsilon)$ Performance insensitive to choice of small ϵ

See Aslan and Zech's paper at:

http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtml

PARADOX

Histogram with 100 bins Fit with 1 parameter S_{min} : χ^2 with NDF = 99 (Expected χ^2 = 99 ± 14)

For our data, $S_{min}(p_0) = 90$ Is p_2 acceptable if $S(p_2) = 115$?

- 1) YES. Very acceptable χ^2 probability
- 2) NO. σ_p from $S(p_0 + \sigma_p) = S_{min} + 1 = 91$ But $S(p_2) - S(p_0) = 25$ So p_2 is 5σ away from best value

Likelihoods for determining parameters

What it is

How it works: Resonance

Error estimates

Detailed example: Lifetime

Several Parameters

Do's and Dont's with £

Simple example: Angular distribution

$$y = N \ (1 + \beta \cos^2 \theta)$$

$$y_i = N \ (1 + \beta \cos^2 \theta_i)$$

$$= \text{probability density of observing } \theta_i, \text{ given } \beta$$

$$L(\beta) = \Pi \ y_i$$

$$= \text{probability density of observing the data set } y_i, \text{ given } \beta$$
Best estimate of β is that which maximises L
Values of β for which L is very small are ruled out
Precision of estimate for β comes from width of L distribution
(Information about parameter β comes from shape of exptl distribution of $\cos \theta$)

CRUCIAL to normalise y $N = 1/\{2(1 + \beta/3)\}$

$$N = 1/\{2(1 + \beta/3)\}$$

How it works: Resonance

Conventional to consider $\ell = \ln(\mathcal{L}) = \sum \ln(p_i)$ If \mathcal{L} is Gaussian, ℓ is parabolic

Maximum likelihood error

Range of likely values of param μ from width of \mathcal{L} or ℓ dists. If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent: 1) RMS of $\mathcal{L}(\mu)$

- 2) $1/\sqrt{(-d^2 \ln \mathcal{L}/d\mu^2)}$ (Mnemonic)
- 3) $\ln(\mathcal{L}(\mu_0 \pm \sigma) = \ln(\mathcal{L}(\mu_0))$ -1/2 If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Errors from 3) usually asymmetric, and asym errors are messy. So choose param sensibly e.g 1/p rather than p; τ or λ

LIFETIME DETERMINATION

Observe ti, to ta

$$\frac{\partial L}{\partial \tau} = \Sigma \left(+ \frac{t}{N} z^2 - \frac{1}{\tau} z \right) = 0 = \frac{\Sigma t}{\tau} - \frac{N}{\tau}$$

$$\Rightarrow \tau = \Sigma t / N = t$$

$$\frac{\partial^{2}Q}{\partial z^{2}} = -\sum_{i=1}^{2} \frac{z_{i}}{z_{i}} + \sum_{i=1}^{2} \frac{1}{z_{i}} = -\frac{N}{2} \frac{N}{2} + \frac{N}{2} = -\frac{N}{2} \frac{N}{2}$$

$$\Rightarrow 5_{2} = \frac{1}{\sqrt{-\frac{N}{2}}} = \frac{z_{i}}{\sqrt{N}}$$

BENALE FOR AVERAGING RESULTS

	Moments	Max Like	Least squares
Easy?	Yes, if	Normalisation, maximisation messy	Minimisation
Efficient?	Not very	Usually best	Sometimes = Max Like
Input	Separate events	Separate events	Histogram
Goodness of fit	Messy	No (unbinned)	Easy
Constraints	No	Yes	Yes
N dimensions	Easy if	Norm, max messier	Easy
Weighted events	Easy	Errors difficult	Easy
Bgd subtraction	Easy	Troublesome	Easy
Error estimate	Observed spread, or analytic	$\left\{ -\frac{\partial^2 I}{\partial p_i \partial p_j} \right\}$	$\left\{\frac{\partial^2 S}{2\partial p_i \partial p_j}\right\}$
Main feature	Easy	Best for params	Goodness of Fit

NORMALISATION FOR LIKELIHOOD

 $\int P(x|\mu) dx$ MUST be independent of μ

data param

e.g. Lifetime fit to
$$t_1, t_2, \dots, t_n$$

$$[\tau = \sum t_i / N]$$

INCORRECT
$$P(t \mid \tau) = e^{-t/\tau}$$

$$T = 0$$

$$-- \tau$$
 to o big

---- Reasonable
$$\tau$$

$\Delta \ln \mathcal{L} = -1/2 \text{ rule}$

If $\mathcal{L}(\mu)$ is Gaussian, following definitions of σ are equivalent:

- 1) RMS of $\mathcal{L}(\mu)$
- 2) $1/\sqrt{(-d^2 \mathcal{L}/d\mu^2)}$
- 3) $ln(\mathcal{L}(\mu_0 \pm \sigma) = ln(\mathcal{L}(\mu_0)) 1/2$

If $\mathcal{L}(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability"

Heinrich: CDF note 6438 (see CDF Statistics Committee Web-page)

Barlow: Phystat05

COVERAGE

How often does quoted range for parameter include param's true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with µ

Study coverage of different methods for Poisson parameter μ , from observation of number of events n

Practical example of Coverage

Poisson counting experiment

Observed number of counts n

Poisson parameter µ

$$P(n|\mu) = e^{-\mu} \mu^{n}/n!$$

Best estimate of $\mu = n$

Range for μ given by $\Delta lnL = 0.5$ rule. Coverage should be 68%.

What does Coverage look like as a function of μ ?

Coverage: £ approach (Not frequentist)

 $P(n,\mu) = e^{-\mu}\mu^n/n!$ (Joel Heinrich CDF note 6438)

 $-2 \ln \lambda < 1$ $\lambda = P(n,\mu)/P(n,\mu_{best})$ UNDERCOVERS

Unbinned \mathcal{L}_{max} and Goodness of Fit?

Find params by maximising $\mathcal L$

So larger \mathcal{L} better than smaller \mathcal{L}

So \mathcal{L}_{max} gives Goodness of Fit??

Monte Carlo distribution of unbinned \mathcal{L}_{\max}

Example

$$\frac{dN}{d\cos\theta} = \frac{1 + \alpha\cos^2\theta}{1 + \alpha/3}$$

$$\mathcal{L} = \prod_{i} \frac{1 + \alpha \cos^2 \theta_i}{1 + \alpha/3}$$

pdf (and likelihood) depends only on $cos^2\theta_i$

Insensitive to sign of $cos\theta_i$

So data can be in very bad agreement with expected distribution

e.g. all data with $\cos\theta < 0$

and \mathcal{L}_{max} does not know about it.

Conclusions re Likelihoods

How it works, and how to estimate errors

 $\Delta(\ln \mathcal{L}) = 0.5$ rule and coverage

Several Parameters

Likelihood does not guarantee coverage

*L*_{max} and Goodness of Fit

Do lifetime and coverage problems on question sheet

Next (last) time

Comparing data with 2 hypotheses

H0 = background only (No New Physics)

H1 = background + signal (Exciting New Physics)

Specific example: Discovery of Higgs