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Example of 2: Least squares straight line fitting 

 

   y                                                                             Data = {xi, yi  i} 

                                                                                  Theory:   y= a + bx 

 

 

 

 

                                                   x 

 

Statistical issues: 

1) Is data consistent with straight line? 

                                 (Goodness of Fit) 

 

2) What are the gradient and intercept (and their errors (and correlation))? 

                                 (Parameter Determination) 

Will deal with issue 2) first 

 

 

N.B. 1.   Method can be used for other functional forms 

                  e.g.  y = a +b/x +c/x2 +……. 

                          y = a + b sin + c sin(2) + d sin(3) +…… 

                          y = a exp(-bx) 

 

N.B. 2   Least squares is not the only method 
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3 Minimise S w.r.t. parameters a and b 

Not best 

straight line fit 



Errors on parameter(s) 
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     S 

 

                                                               In parabolic approx,  = 1/1/2 d2S/d2 

                                               1                                                  (mneumonic) 

 

 

                             best            

 

With more than one param, replace S() by S(1, 2, 3, …..),  

and covariance matrix E is given by  
                         1  ∂2S    

      E-1 =        2∂i∂j 

 

S= Smax -1 contour  

           1                .     22 

                      

  

                 21                        2 
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Summary of straight line fitting 

• Plot data 

          Bad points 

          Estimate a and b (and errors) 

• a and b from formula 

• Errors on a’ and b 

• Cf calculated values with estimated 

• Determine Smin (using a and b) 

• ν = n – p 

• Look up in χ2 tables  

• If probability too small,  IGNORE RESULTS  

• If probability a “bit” small, scale errors?  

                    Asymptotically 
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Summary of straight line fitting 

• Plot data 

          Bad points 

          Estimate a and b (and errors) 

• a and b from formula 

• Errors on a’ and b                                         Parameter Determination 

• Cf calculated values with estimated 

• Determine Smin (using a and b) 

• ν = n – p                                                         Goodness of Fit 

• Look up in χ2 tables  

• If probability too small,  IGNORE RESULTS  

• If probability a “bit” small, scale errors?  

                    Asymptotically 
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Properties of 2 distribution 
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Properties of 2 distribution, contd. 
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Goodness of Fit 

2       Very general 

           Needs binning                                   y 

           Not sensitive to sign of deviation 

 

Run Test   Not sensitive to mag. of devn. 

                                                                                        x 

Kolmogorov- Smirnov 

 

Aslan-Zech 
 

 

Review:    Mike Williams, “How good are your fits? Unbinned multivariate 

goodness-of-fit tests in high energy physics” 

http://arxiv.org/pdf/1006.3019.pdf 

 

Book:        D’Agostino and Stephens, “Goodness of Fit techniques” 

http://arxiv.org/pdf/1006.3019.pdf


10 

Goodness of Fit:  

Kolmogorov-Smirnov 

Compares data and model cumulative plots 

Uses largest discrepancy between dists. 

Model can be analytic or MC sample 

 

Uses individual data points 

Not so sensitive to deviations in tails    

          (so variants of K-S exist) 

Not readily extendible to more dimensions 

Distribution-free conversion to p; depends on n  

          (but not when free parameters involved – needs MC) 

 

 



11 

Goodness of fit: ‘Energy’ test  

Assign +ve charge to data       ; -ve charge to M.C. 

Calculate ‘electrostatic energy E’ of charges 

If distributions agree, E ~ 0 

If distributions don’t overlap, E is positive                  v2 

Assess significance of magnitude of E by MC 

                                                                                                                     

N.B.                                                                                                             v1                                                                                                         

1) Works in many dimensions 

2) Needs metric for each variable (make variances similar?) 

3) E ~ Σ qiqj f(Δr = |ri – rj|) ,    f = 1/(Δr + ε) or –ln(Δr + ε)  

      Performance insensitive to choice of small ε 

See Aslan and Zech’s paper at: 

http://www.ippp.dur.ac.uk/Workshops/02/statistics/program.shtml 
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PARADOX 

Histogram with 100 bins 

Fit with 1 parameter 

Smin: χ
2 with NDF = 99  (Expected χ2 = 99 ± 14) 

 

For our data, Smin(p0) = 90 

Is p2 acceptable if S(p2) = 115? 

 

1) YES.    Very acceptable χ2  probability 

 

2)  NO.      σp from S(p0 +σp) = Smin +1 = 91 

                  But S(p2) – S(p0) = 25 

                  So p2 is 5σ away from best value 
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 Likelihoods 
for determining parameters  

What it is 

How it works: Resonance 

Error estimates 

Detailed example: Lifetime 

Several Parameters 

 

Do’s and Dont’s with L    **** 
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                Simple example:  Angular distribution  

 
                                 y = N (1 +  cos2) 

                                 yi = N (1 +  cos2i) 

                                    = probability density of observing i, given   

                 L() =  yi 

                                    = probability density of observing the data set yi, given  

     Best estimate of  is that which maximises L 

     Values of  for which L is very small are ruled out 

     Precision of estimate for  comes from width of L distribution 

(Information about parameter  comes from shape of exptl distribution of cos) 

 

    CRUCIAL  to normalise y           N = 1/{2(1 + /3)} 

cos                          cos                                                                                           

 = -1                    large                                   L 
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How it works: Resonance 

y ~               Γ/2 

        (m-M0)
2 + (Γ/2)2 

 

 

 

 

 

 

                              m                                                           m 

 

            Vary M
0

                                                       Vary Γ 
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Conventional to consider  l  = ln(L)  = Σ ln(pi) 
If L is  Gaussian, l is parabolic  
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Maximum likelihood error 

Range of likely values of param μ from width of L or l dists. 

If L(μ) is Gaussian, following definitions of σ are equivalent: 

1) RMS of L(µ) 

2) 1/√(-d2lnL / dµ2)    (Mnemonic)   
3) ln(L(μ0±σ) = ln(L(μ0)) -1/2 

If L(μ) is non-Gaussian, these are no longer the same 

 

“Procedure 3) above still gives interval that contains the 
true value of parameter μ with 68% probability” 

 
Errors from 3) usually asymmetric, and asym errors are messy. 

So choose param sensibly  

e.g 1/p rather than p;       τ or λ       
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Moments Max Like Least squares 

Easy? Yes, if… Normalisation, 

maximisation messy 

Minimisation 

Efficient? Not very Usually best Sometimes = Max Like 

Input Separate events Separate events Histogram 

Goodness of fit Messy No (unbinned) Easy 

Constraints No  Yes Yes 

N dimensions Easy if …. Norm, max messier Easy 

Weighted events Easy Errors difficult Easy 

Bgd subtraction Easy Troublesome Easy 

Error estimate Observed spread, 

or analytic 

   - ∂2l      

   ∂pi∂pj 

     ∂2S       

  2∂pi∂pj 

Main feature Easy Best for params Goodness of Fit 
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NORMALISATION FOR LIKELIHOOD 

 dx )|P (x 

  data         param 

  e.g.  Lifetime fit to t1, t2,………..tn 

 

 

 

 

 

 

 

 

 

 

             

t 



b ig  t o o

 R e a s o n a b le

MUST be independent of  

        

  / 1   Missing                                                

     

          

                                

                   /      ) | (       

 

  

 

-  t e t P INCORRECT 
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ΔlnL = -1/2 rule 
If L(μ) is Gaussian, following definitions of σ are 

equivalent: 

1) RMS of L(µ) 

2) 1/√(-d2L/dµ2)   

3) ln(L(μ0±σ) = ln(L(μ0)) -1/2 

If L(μ) is non-Gaussian, these are no longer the same 

“Procedure 3) above still gives interval that contains the 

true value of parameter μ with 68% probability” 

 

Heinrich: CDF note 6438 (see CDF Statistics 

Committee Web-page) 

Barlow: Phystat05 
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                                     COVERAGE 

How often does quoted range for parameter include param’s true value? 

 

N.B. Coverage is a property of METHOD, not of a particular exptl result 

 

Coverage can vary with μ 

 

Study coverage of different methods for Poisson parameter  μ, from 

observation of number of events n 

 

Hope for: 

 

 

 

Nominal 

value 

100% 



)(C
Undercoverage region 



Practical example of Coverage 

Poisson counting experiment 

        Observed number of counts n 

        Poisson parameter μ 

        P(n|μ) = e-μ μn/n!  

Best estimate of μ = n 

Range for μ given by ΔlnL = 0.5 rule. Coverage should 

be 68%. 

What does Coverage look like as a function of μ? 

               

              C            ? 
 

                                  μ 
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Coverage : L approach (Not frequentist) 

 

P(n,μ) = e-μμn/n!    (Joel Heinrich CDF note 6438) 

-2 lnλ< 1         λ = P(n,μ)/P(n,μbest)       UNDERCOVERS 
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Great? Good? Bad 

Lmax 

Frequency 

     Unbinned Lmax and Goodness of Fit? 

Find params by maximising L 

So larger L better than smaller L  

So Lmax gives Goodness of Fit?? 

Monte Carlo distribution 

of unbinned Lmax 
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Example  

 

 

 

L = 

 

                                                                                              cos θ 

 

pdf (and likelihood) depends only on cos2θi 

Insensitive to sign of cosθi 

So data can be in very bad agreement with expected distribution 

e.g. all data with cosθ < 0  

and Lmax does not know about it. 

 

Example of general principle 

 

3/1

cos1

cos

2






d

dN

 



i
3/1

cos1 i
2
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Conclusions re Likelihoods 

How it works, and how to estimate errors 

(ln L) = 0.5 rule and coverage 

Several Parameters 

Likelihood does not guarantee coverage 

Lmax and Goodness of Fit 

 

Do lifetime and coverage problems on 

question sheet 



Next (last) time 
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Comparing data with 2 hypotheses 

          H0 = background only  (No New Physics) 

          H1 = background + signal (Exciting New Physics) 

 

Specific example: Discovery of Higgs 


