Statistics Lectures: Questions for discussion

Louis Lyons
Imperial College and Oxford

CERN Summer Students

Combining errors

$$
\begin{gathered}
z=x-y \\
\delta z=\delta x-\delta y
\end{gathered}
$$

Why $\quad \sigma_{z}{ }^{2}=\sigma_{x}{ }^{2}+\sigma_{y}{ }^{2}$? [2]

Combining errors

$$
\begin{gather*}
z=x-y \\
\delta z=\delta x-\delta y \tag{1}
\end{gather*}
$$

Why $\quad \sigma_{z}{ }^{2}=\sigma_{x}{ }^{2}+\sigma_{y}{ }^{2}$? [2]

1) [1] is for specific $\delta x, \delta y$

Could be

N.B. Mneumonic, not proof
2) $\sigma_{z}^{2}=\overline{\delta z^{2}}=\overline{\delta x^{2}}+\overline{\delta y^{2}}-2 \overline{\delta x \delta y}$

$$
=\sigma_{x}^{2}+\sigma_{y}^{2}
$$

3) Averaging is good for you: $\quad N$ measurements $x_{i} \pm \sigma$
[1] $x_{i} \pm \sigma \quad$ or [2] $x_{i} \pm \sigma / \sqrt{ } N$?
4) Tossing a coin:

Score 0 for tails, 2 for heads (1 ± 1)
After 100 tosses, [1] 100 ± 100 or [2] 100 ± 10 ?

Prob(0 or 200) $=(1 / 2)^{99} \sim 10^{-30}$
Compare age of Universe $\sim 10^{18}$ seconds

Combining Experimental Results

$$
\begin{aligned}
& x_{i}=\sigma_{i} \text { (uncorrelated) } \\
& \hat{x}=\frac{\sum x_{i} / \sigma_{i}^{2}}{\sum 1 / \sigma_{i}^{2}} 1 / \sigma^{2}=\Sigma 1 / \sigma_{i}^{2} \quad\left\{\begin{array}{l}
\text { From } S=\sum\left(x_{i}-\hat{x}\right)^{2} / \sigma_{i}^{2} \\
\longleftarrow \quad \text { Minimise } S \\
\begin{array}{l}
\sigma \\
\text { OR Prom }
\end{array} \\
S_{\text {min }}+1
\end{array}\right.
\end{aligned}
$$

Define $\omega_{i}=1 / \sigma_{i}^{2}=$ weight \sim information content

$$
\begin{aligned}
& \hat{x}=\sum \omega_{i} x_{i} / \Sigma \omega_{i} \quad \text { N.B. Better to combine data! } \\
& W=\sum \omega_{i}
\end{aligned}
$$

Example: Equal $\sigma_{i} \Rightarrow \hat{x}=\bar{x}$

$$
\sigma=\sigma_{i} / \sqrt{n}
$$

BEWARE

$$
\left.\begin{array}{r}
100 \pm 10 \\
1 \pm 1
\end{array}\right\} \quad 2 \pm 1 ?
$$

or 50.5 ± 5 ?

For your thought

Poisson $P_{n}=e^{-\mu} \mu^{n} / n$!
$\mathrm{P}_{0}=\mathrm{e}^{-\mu} \quad \mathrm{P}_{1}=\mu \mathrm{e}^{-\mu} \quad \mathrm{P}_{2}=\mu^{2} \mathrm{e}^{-\mu} / 2$
For small $\mu, P_{1} \sim \mu, \quad P_{2} \sim \mu^{2} / 2$ If probability of 1 rare event $\sim \mu$, why isn't probability of 2 events $\sim \mu^{2}$?

$$
\mathrm{P}_{2}=\mu^{2} \mathrm{e}^{-\mu} \quad \text { or } \quad \mathrm{P}_{2}=\mu^{2} / 2 \mathrm{e}^{-\mu} ?
$$

1) $P_{n}=e^{-\mu} \mu^{n} / n$! sums to unity
2) n ! comes from corresponding Binomial factor $\mathrm{N}!/\{\mathrm{s}!(\mathrm{N}-\mathrm{s})$!\}
3) If first event occurs at t_{1} with prob μ, average prob of second event in $t-t_{1}$ is $\mu / 2$. (Identical events)
4) Cow kicks and horse kicks, each producing scream.

Find prob of 2 screams in time interval t, by P_{2} and P_{2}

2c, Oh
1c,1h

$$
\left(c e^{-c}\right)\left(h e^{-h}\right)
$$

0c,2h

$$
\left(c^{2} e^{-c}\right)\left(e^{-h}\right)
$$

$$
\left(e^{-c}\right)\left(h^{2} e^{-h}\right)
$$

$$
\left(c^{2}+h c+h^{2}\right) e^{-(c+h)}
$$

$(c+h)^{2} e^{-(c+h)}$
Wrong
$\left(1 / 2 c^{2} e^{-c}\right)\left(e^{-h}\right)$
(ce ${ }^{-c}$) (he ${ }^{-h}$)
(e^{-c}) $\left(1 / 2 h^{2} e^{-h}\right)$
$1 / 2\left(c^{2}+2 h c+h^{2}\right) e^{-(c+h)}$
$1 / 2(c+h)^{2} e^{-(c+h)}$
OK

PARADOX

Histogram with 100 bins
Fit with 1 parameter
$S_{\text {min }}: \chi^{2}$ with NDF $=99\left(\right.$ Expected $\left.\chi^{2}=99 \pm 14\right)$
For our data, $S_{\text {min }}\left(p_{0}\right)=90$
Is p_{2} acceptable if $S\left(p_{2}\right)=115$?

1) YES. Very acceptable χ^{2} probability
2) NO. $\quad \sigma_{\mathrm{p}}$ from $\mathrm{S}\left(\mathrm{p}_{0}+\sigma_{\mathrm{p}}\right)=\mathrm{S}_{\text {min }}+1=91$

But $S\left(p_{2}\right)-S\left(p_{0}\right)=25$
So p_{2} is 5σ away from best value

Louls Lyons

$$
O U_{N} N-99-12
$$

MATHEMATILAL FORMULATON

$$
S(x)=\sum \frac{\left(x_{i}-x\right)^{2}}{\sigma^{2}} \equiv \sum \frac{\left(x_{i}-\bar{x}\right)^{2}}{\sigma^{2}}+N \frac{(\bar{x}-x)^{2}}{\sigma^{2}}
$$

Sentere of Powts HRT THEIR MEAN.
wDep of x
Toms is TERA Joall has expected vane

$$
(N-1) \pm \sqrt{2(N-1)}
$$

$$
x_{d-1}^{2}
$$

How wat x manss जl7\% \bar{x}
varios with x best mulut is $x=\bar{x}$
werowes by 1
POR $x=\bar{x} \neq \frac{\sigma}{\sqrt{N}}$ x_{1}^{2}

CONCLUSION FOR THR cASÉ
Comparing $\mathrm{H}_{\mathrm{C}}: \hat{p}=1$,
व $H_{2}: p=p_{2}$
DECIBIN DEEENDS on $\triangle x^{2}$

ANOTHER E EMILE
00 Sins
n 100 enacts him

$$
\begin{aligned}
H 1: & 1+a x \\
& a=0.05
\end{aligned}
$$

 No sear PARAMO

$$
\begin{aligned}
& H_{2}: \quad 1+6 \cos (\pi x) \\
& b=0.05
\end{aligned}
$$

Gemesote vents according $t=1+1$ (+stat fiesta)
Try fitting according to HI or it H_{2}

$$
x_{1}^{2} \quad x_{2}^{2}
$$

Look at dist of x_{1}^{2} As expected for $A D P=$ les
$x_{1}^{2} \quad$ B ir Gigo Mary * "satisfactory"
$x_{2}^{2}-x_{1}^{2}$ Decision based on $A x^{2}$ has mut better power
Repeat for events generated according to H_{2}
hook of dist of x^{2},

$$
x_{2}^{2}
$$

* 69\% have

$$
x_{2}^{2}<130
$$

$$
x_{-}^{2}-x^{2}
$$

Distideristinat 2 HyPotheses on bises of Δx^{2}
(500 simphations)

$$
H_{2}=1+0.05 \cos (\pi x)
$$

Comparing data with different hypotheses

Peasant and Dog

1) Dog d has 50% probability of being 100 m. of Peasant p
2) Peasant p has 50% probability of being within 100m of Dog d ?

River $\mathrm{x}=0$

River $\mathrm{x}=1 \mathrm{~km}$

Given that: a) Dog d has 50% probability of being 100 m . of Peasant,
is it true that: b) Peasant p has 50% probability of being within 100 m of $\operatorname{Dog} \mathrm{d}$?

Additional information

- Rivers at zero \& 1 km . Peasant cannot cross them.

$$
0 \leq \mathrm{h} \leq 1 \mathrm{~km}
$$

- Dog can swim across river - Statement a) still true

If dog at -101 m , Peasant cannot be within 100 m of dog
Statement b) untrue

1) More specific on statement (1):

$$
\text { Prob }(d-h)=\left\{\begin{array}{cl}
\text { const } & \text { for }|d-h|<200 \mathrm{~m} \\
0 & \text { for } \left.|d-h|>200 \mathrm{~m}\left[L^{\prime} \text { Hoo }\right)\right]
\end{array}\right.
$$

2) Hunter h uniform in $0 \rightarrow 1 \mathrm{~lm}$ [PRioR]

