Statistics Lectures: Questions for discussion

> Louis Lyons Imperial College and Oxford

CERN Summer Students

July 2014

Combining errors

$$z = x - y$$

$$\delta z = \delta x - \delta y \qquad [1]$$

Why $\sigma_z^2 = \sigma_x^2 + \sigma_y^2$? [2]

Combining errors

Z = X - Y $\delta z = \delta x - \delta y$ [1] Why $\sigma_z^2 = \sigma_x^2 + \sigma_v^2$? [2] 1) [1] is for specific δx , δy Could be ______ so on average ______? N.B. Mneumonic, not proof

2)
$$\sigma_z^2 = \overline{\delta z^2} = \overline{\delta x^2} + \overline{\delta y^2} - 2 \overline{\delta x \delta y}$$

= $\sigma_x^2 + \sigma_y^2$ provided.....

3) Averaging is good for you: N measurements $x_i \pm \sigma$ [1] $x_i \pm \sigma$ or [2] $x_i \pm \sigma/\sqrt{N}$?

4) Tossing a coin:

Score 0 for tails, 2 for heads (1 ± 1)

After 100 tosses, [1] 100 ± 100 or [2] 100 ± 10 ?

 $Prob(0 \text{ or } 200) = (1/2)^{99} \sim 10^{-30}$

Compare age of Universe ~ 10^{18} seconds

Combining Experimental Results $\chi_{i} \neq \delta_{i} \qquad (\text{uncorrelated})$ $\hat{\chi} = \frac{\sum \chi_{i}/\delta_{i}^{2}}{\sum 1/\delta_{i}^{2}} \qquad From \quad G = \frac{\sum (\chi_{i} - \hat{\chi})^{2}}{\delta_{i}^{2}}$ $Hiaimise \quad S$ $\frac{1}{\delta^{2}} = \sum 1/\delta_{i}^{2} \qquad from \quad S_{min} + 1$ $OR \quad Propagate errors from \quad \hat{\chi} = \dots$ Define U: = 1/5:2 = weight ~ information content $\hat{x} = \sum \omega_i x_i / \sum \omega_i$ $w = \sum \omega_i$ N.B. Better to combine data! Example: Equal $5: = D \quad \hat{x} = \overline{x}$ $5 = 5:/\sqrt{n}$

For your thought

For small μ , $P_1 \sim \mu$, $P_2 \sim \mu^2/2$ If probability of 1 rare event $\sim \mu$, why isn't probability of 2 events $\sim \mu^2$?

$$P_2 = \mu^2 e^{-\mu}$$
 or $P_2 = \mu^2/2 e^{-\mu}$?

1) $P_n = e^{-\mu} \mu^n / n!$ sums to unity

2) n! comes from corresponding Binomial factor N!/{s!(N-s)!}

3) If first event occurs at t_1 with prob μ , average prob of second event in t-t₁ is $\mu/2$. (Identical events)

4) Cow kicks and horse kicks, each producing scream. Find prob of 2 screams in time interval t, by P_2 and P_2

2c, 0h $(c^{2}e^{-c}) (e^{-h})$ 1c,1h $(ce^{-c}) (he^{-h})$ 0c,2h $(e^{-c}) (h^{2}e^{-h})$ Sum $(c^{2} + hc + h^{2}) e^{-(c+h)}$ 2 screams $(c+h)^{2} e^{-(c+h)}$ Wrong

 $(\frac{1}{2} c^{2}e^{-c}) (e^{-h})$ (ce^{-c}) (he^{-h}) (e^{-c}) ($\frac{1}{2} h^{2}e^{-h}$) $\frac{1}{2}(c^{2} + 2hc + h^{2}) e^{-(c+h)}$ $\frac{1}{2}(c+h)^{2} e^{-(c+h)}$ OK

PARADOX

Histogram with 100 bins Fit with 1 parameter S_{min} : χ^2 with NDF = 99 (Expected $\chi^2 = 99 \pm 14$)

For our data, $S_{min}(p_0) = 90$ Is p_2 acceptable if $S(p_2) = 115$?

1) YES. Very acceptable χ^2 probability

2) NO. $\sigma_p \text{ from } S(p_0 + \sigma_p) = S_{\min} + 1 = 91$ But $S(p_2) - S(p_0) = 25$ So p_2 is 5 σ away from best value

CONCLUSION FOR THIS CASE
COMPARING HI:
$$\dot{p} = \dot{f}_1$$

d H2: $\dot{p} = \dot{p}_2$
DECLISION DEPENDS ON $\Delta \chi^2$

10

Fremesste wents according to HI (+ stat flucta) Try fitting according to HI or to H2 χ_1^2 χ_2^2

Look at dist of
$$\chi_1^2$$
. As expected for NDF=100
 χ_1^2 Bit bigger Many #
"satisfactory"
 $\chi_1^2 - \chi_1^2$ Decision based in AN²
has much better for events generated according to H 2

x = 6 $x^{2} = x^{2}$ $x^{2} = x^{2}$ $x^{2} = x^{2}$

R

Comparing data with different hypotheses

Peasant and Dog

- Dog d has 50%
 probability of being
 100 m. of Peasant p
- 2) Peasant p has 50%probability of beingwithin 100m of Dog d ?

Given that: a) Dog d has 50% probability of being 100 m. of Peasant,

is it true that: b) Peasant p has 50% probability of being within 100m of Dog d?

Additional information

- Rivers at zero & 1 km. Peasant cannot cross them. $0\!\leq\!h\!\leq\!1km$

• Dog can swim across river - Statement a) still true

If dog at –101 m, Peasant cannot be within 100m of dog

Statement b) untrue

