

CMS Calorimetry Introduction for Newcomers

- 1. Basics, inc. physics drivers
- 2. Technology choices
- 3. Data acquisition
- 4. Construction & Assembly
- 5. Issues since startup
- 6. Performance
- 7. Long-term future (HL-LHC)
- 8. Organization

David Barney, Electromagnetic Calorimeter (ECAL) Pawel de Barbaro, Hadron Calorimeter (HCAL)

Basics

Technology Data Acquisition Construction Issues Performance Long-term Organization

CMS Induction Course - Calorimetry

Basics Technology

CMS Calorimetry: Archeology

CMS Induction Course - Calorimetry

From the CMS Letter of Intent (1992): "The CMS (Compact Muon Solenoid) detector has been optimized for the search of the SM Higgs boson over a mass range from 90 GeV to 1 TeV" ...

"A high resolution crystal electromagnetic calorimeter, designed to detect the two photon decay of an intermediate mass Higgs, is located inside the coil."

"Hermetic hadronic calorimeters" surround the intersection region up to $|\eta| = 4.7$ allowing tagging of forward jets and measurement of missing transverse energy.

CMS Calorimetry: Physics Drivers

Benchmark for ECAL: $H \rightarrow \gamma \gamma$

- Most sensitive channel for $m_H < 130 \text{ GeV}$
 - Small branching ratio (~0.3%) but very clean signature:
 - Narrow resonance of **two high E_T photons** over a non-resonant background of genuine or **fake** di-photon events

$H \rightarrow ZZ$ is the other "golden" channel

• e/µ final states

→ Need high resolution, high granularity ECAL

HCAL is "less constrained by the physics processes. Good energy resolution is less important...Emphasis will be laid on hermeticity to ensure a good missing transverse energy (E_T or MET) measurement..." (CMS Technical Proposal, 1994)

- Coverage up to $|\eta| \sim 5$ is necessary for certain reactions, e.g. heavy $H \rightarrow ZZ \rightarrow l^+l^-\nu\nu$
- + Extending from $|\eta|{=}3$ to $|\eta|{=}5$ improves resolution of missing E_T by a factor 3

Basics

Technology Data Acquisition Construction Issues Performance Long-term Organization

Basics

- Overall division into two types of calorimeter in CMS:
 - -Electromagnetic Calorimeters (ECAL)
 - Measure the energies/positions of electrons/positrons and photons
 - -Hadronic Calorimeters (HCAL)
 - Measure the energies/positions of charged and neutral hadrons

Basics

Technology Data Acquisition Construction Issues Performance Long-term Organization

- ECAL + HCAL divided into "barrel" and "endcap" partitions; HCAL also includes "forward" and "very forward" partitions
 - -ECAL: Barrel (EB), Endcaps (EE), Endcap preShower (ES)
 - -HCAL: Barrel (HB), Endcaps (HE), Forward (HF), CASTOR, ZDC

• EB, EE, ES, HB, HE are all inside the 3.8T solenoid

Particles in CMS

Basics

Technology Data Acquisition

CMS Induction Course - Calorimetry

Particle ID in Calorimeters

CMS Induction Course - Calorimetry

7

Particle ID in Calorimeters

Basics

Technology Data Acquisition Construction Issues Performance Long-term Organization

The power of CMS does not come from any *individual* subsystem, but from combining information from ALL subsystems

Canorimeter

Hadron Calorimeter No signals in Tracker Possible energy deposit in ECAL Energy deposit in HCAL

Electron

Signals in Tracker

Curves in B field: R=P/0.3B

Energy deposit in ECAL

CMS Induction Course - Calorimetry

8

D. Barney, P. de Barbaro

)n)

ECAL & HCAL locations in CMS

Basics

Technology Data Acquisition Construction Issues Performance Long-term Organization

CMS ECAL Partitions

CMS Induction Course - Calorimetry

10

Basics Technology

CMS HCAL Partitions

HCAL Outer - HO HCAL Barrel - HB HCAL Endcap - HE **Data Acquisition** HCAL Forward - HF ZDC not shown (140m away) CASTOR

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

TECHNOLOGY CHOICES

CMS Induction Course - Calorimetry

12

ECAL: the Early Days

Criteria for design of ECAL in CMS

- Hermetic, compact and granular, with excellent energy resolution to $|\eta| < 2.5$
 - → homogeneous calorimeter (minimizes sampling fluctuations)
- Large dynamic range, coupled with excellent linearity, to > 1 TeV
- Provide triggering info. e.g. particle ID, energy, isolation
- Radiation tolerant to expected dose rates and cumulative doses/fluences
- Endcap Preshower to aid particle identification

Several options in the early days (early 1990s) of CMS, including:

nstruction ues		Sampling Homogeneous scintillators				13.51
formance g-term anization	Property	Pb/plastic Shashlik	Liquid Xenon	CeF ₃ crystals	PbWO ₄ crystals	
	Density (g cm ⁻³)	4.5	3.06	6.16	8.28	Selected by CMS in 1994 + Preshower based on Si sensors
	Radiation length X ₀ (cm)	1.7	2.77	1.68	0.85	
	Molière radius R _M (cm)	3.4	4.1	3.39	2.19	
	Wavelength peak (nm)	500	175	300	440	
	Fast decay constant (ns)	<10	2.2	5	<10	
Inductio	Light yield (γ per MeV)	13	~5 x 10 ⁴	4000	100 D. Bari	ney, P. de Barbaro

Basics

Technology Data Acquisition

Homogeneous EB/EE

- Incident electron/photon generates EM shower (spread laterally over several crystals) in the heavy PbWO₄ material
 - Charged particles in the shower produce scintillation light isotropically
 - Amount of scintillation light is proportional to incident particle energy
 - Scintillation light detected by photodetectors with internal amplification:
 - Silicon Avalanche PhotoDiodes APDs (in EB) or Vacuum PhotoTriodes VPTs (in EE)

CMS Induction Course - Calorimetry

The CMS ECAL in Numbers

Homogeneous, compact, hermetic, fine grain **PbWO₄ crystal calorimeter**

- Emphasis on energy resolution
- No longitudinal segmentation (except ES)

• Barrel (EB): |ŋ| < 1.48

Technology Data Acquisition Construction Issues Performance Long-term Organization

Basics

- 36 Supermodules: 1700 crystals (1 supermodule = 4 modules):
 61200 crystals total of 17 shapes
 - 61200 crystals total, of 17 shapes
- (2.2×2.2×23 cm³) ~26X₀

• Endcaps (EE): 1.48 < $|\eta|$ < 3.0

- 4 Dees (2 per endcap): 3662 crystals (mostly in 5x5 supercrystals) 14648 crystals total, of 1 shape
- $-(3.0 \times 3.0 \times 22 \text{ cm}^3) \sim 25X_0$

• Preshower (ES): 1.65 < $|\eta|$ < 2.6

- 4 planes (2 per endcap): 1072 Si sensors
 1 sensor = 6.3 x 6.3 x 0.032 cm³, 32 strips
 137216 strips total
- $2X_0 + 1X_0$ of Pb interspersed with Si strips - 1.90 × 61 mm² x-y view

HCAL: the Early Days

Criteria for design of HCAL in CMS

- Hermetic and compact able to fit within the CMS solenoid up to $|\eta|{<}5$
- Large dynamic range, coupled with excellent linearity, to > 1 TeV for jets
- Provide triggering info. e.g. particle ID, energy, isolation
- Radiation tolerant to expected dose rates and cumulative doses/fluences
- Reasonable energy resolution with depth segmentation \rightarrow sampling calorimeter
- Basic design of HB already fixed at time of LoI
 - Copper plates interleaved with plastic scintillators with embedded wavelengthshifting (WLS) fibres (eventually used brass (70% Cu, 30% Zn) absorber)
 - Light channeled using clear fibres, to photodetectors located at the ends of the barrel
- For HE, initial design was rather ambitious
 - Cu absorber interleaved with 2 x 2 x 0.04 cm³ Si sensors → 360m² of Si (eventually used similar structure to HB – brass + scintillator + WLS)
- For HF (outside the solenoid), emphasis was on radiation hardness
 - Steel plates interleaved with parallel-plate chambers
 - (eventually used steel absorber with Cerenkov-producing quartz fibres)

Basics Technology Data Acquisition Construction Issues Performance

Sampling HB/HE

- Incident charged/neutral hadron generates EM shower in the heavy brass absorber
 - Charged particles in the shower produce scintillation light in the plastic
 - Amount of scintillation light is proportional to incident particle energy
 - Scintillation light shifted in wavelength and transported to Hybrid PhotoDiodes

Basics

Data Acquisition

Wavelength-shifting (WLS) fibre

Clear fibre for light transport to HPD

CMS Induction Course - Calorimetry

HCAL Megatiles

CERN

- Plastic scintillator + WLS + clear fibres
- Different sizes for the different layers in HB/HE
- Individual tile sizes vary with η/ϕ

HCAL Barrel and Endcaps

- Barrel (HB): |η|<1.3, 36 wedges (18 HB+, 18 HB-)
 - 14 layers of brass + steel front/back plates \rightarrow ~10 λ
 - 16 megatile layers; 16 η and 4 ϕ divisions per wedge
- Endcaps (HE): 1.3<|η|<3.0, 36 petals per endcap
 - 17 layers of brass \rightarrow ~10 λ
 - 17 megatile layers; 12 η and 1 or 2 ϕ divisions per wedge
 - $-2 \text{ or } 3 \text{ (high } \eta \text{) longitudinal segments}$

Basics

Technology Data Acquisitior Construction Issues Performance Long-term Organization

Forward HCAL

- Forward (HF): 3.0< $|\eta|$ <5.0, 18 wedges per end
 - Grooved steel plates, 5mm thick, 165cm long \rightarrow ~10 λ
 - ~square grid of holes spaced 5mm apart
 - -1mm diameter fibres (600 μ m quartz core + cladding + buffer)
 - -2 fibre lengths (read out separately) to distinguish e/ γ from hadron showers:
 - Half are 165cm long
 - Other half start after a depth of 22cm

Basics

Technology Data Acquisition Construction Issues Performance Long-term Organization

CMS Induction Course - Calorimetry

CASTOR

- CASTOR (Centauro And Strange Object Research), 5.2<| $\eta|$ <6.6 on "minus" side of CMS only
 - Cerenkov-based calorimeter, similar to HF, 14.38m from the interaction point
 - Layers of tungsten (W) plates interleaved with fused silica quartz plates
 - Light readout via photomultiplier tubes (PMTs)
 - Electromagnetic (20.1 X₀, 0.77 λ) and hadronic (9.24 λ)

- ZDC (Zero Degree Calorimeter), especially for heavy-ion and diffractive physics
 - Located between the two LHC beam pipes inside the LHC neutral particle absorbers (TAN), ~140m from the interaction point on both sides of CMS, $|\eta|$ >8.3
 - About 1m of layers of tungsten plates interspersed with layers of quartz fibres

Basics

Technology Data Acquisition Construction Issues Performance Long-term Organization

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

DATA ACQUISITION

ECAL Front-end Electronics

- Current pulses from APDs → amplified and shaped by MGPA with 3 separate gains → all 3 amplified signals digitized by ADC @ 40 MHz
 - 1 MGPA + 1 ADC per crystal
- FENIX chip stores digital signals from multiple crystals until reception of a level-1 trigger signal → data sent via optical link to off-detector data-acquisition electronics
- Another FENIX chip sums the energy in a group of crystals (5x5 in EB; 5 in EE)
 → "trigger primitive" sent to off-detector trigger electronics

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

Basics

ECAL Electronics Chain

HCAL Readout Chain

Hybrid Photo-detectors

- Designed to operate in high magnetic fields, up to 4T.
- Proximity-focusing with 3.5mm gap, with
 - E field parallel to B field.
- HV of 8kV with 18 pixels (20mm² each).

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

- Gain of ~2k, linear response over large dynamic range from min-ionizing particles (muons) up to 3TeV hadron showers. * 2008 JINST 3 508004 * P. Cushman et al., NIM A 504 (2003) 502)

- Charge integrator and encoder (QIE) ADC chips digitize the signals from the HPD / PMT.
- Each QIE has 4 capacitors which are connected to the input by 25ns time intervals.
- Integrated charge from the capacitors is then sent to HCAL trigger boards for further processing.

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

CONSTRUCTION & ASSEMBLY

CMS Induction Course - Calorimetry

27

EB/EE Crystals

Technology Data Acquisition Construction Issues Performance Long-term Organization

Basics

EB Assembly

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

Inserting 5x2 crystals+APDs into glass-fibre alveolae \rightarrow Sub-module

An ECAL Module of 400 crystals

A completed Supermodule ready for tests in a beam

EE Assembly

Basics Technology Data Acquisition Construction

Crystals+VPTs, carbon-fibre alveolar aluminium spacers etc. = supercrystal

5x5 Supercrystals being mounted to form an EE Dee

Basics

ES Assembly

Sensor + electronics **=**micromodule

Up to 10 micromodules = ladder to its front-end electronics Technology Data Acquisition Construction Some of the Preshower team half-plane of ladders, cabled with the first completed Dee and attached to a lead absorber

Wire-bonding a silicon sensor

CMS Induction Course - Calorimetry

31

HB Assembly

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

Plastic scintillator tiles with embedded wavelength-shifting fibres

One of 36 brass wedges showing gaps for the scintillators

15 14 Assembled HB wedges, showing the optical cabling

Accidents Happen (rarely!)

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

NSE

HCAL wedge was repaired before being installed in CMS!

CMS Induction Course - Calorimetry

HE Construction

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

HF Assembly

Inserting quartz fibres into a steel wedge

Basics Technology Data Acquisition Construction Issues Performance

Wedges being assembled into Dees

Close-up of HF steel wedge showing

grooved plates to allow quartz fibres

Basics Technology

Construction

HCAL Installation - 2007

Lowering one HB underground

HB+ about to be inserted into YB0

a, a Installing the HE on the endcap disc

ECAL Installation – 2007-2009

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

Installing the endcap Preshower around the beam pipe

Basics Technology Data Acquisition Construction Issues Performance Long-term

ISSUES SINCE START OF DATA TAKING IN 2010

Issues since startup: ECAL

Barrel/Endcaps/Preshower

- Some non-working single channels and trigger-towers
 - Cannot fix, but number is not (yet) increasing
- Barrel
 - Anomalous signals due to direct ionization of the APDs ("spikes")
 - Mitigated with front-end configuration & HLT/offline filtering

Endcaps

- One non-powered region due to Low Voltage problem
 - Fixed in LS1
- One non-powered High-Voltage region
 - Cannot fix
- Preshower
 - Two non-powered regions due to LV problems
 - Fixed in LS1
 - Anomalous currents in small fraction (~3%) of sensors after low-level irradiation
 - "cured" after higher levels of radiation

Fraction of working channels at the end of Run I and when Run II starts

EB: 99.11% → 99.11% EE: 98.38% → 98.89% ES: 96.8% → 99.95%

Basics

Technology Data Acquisition Construction Issues

Performance ₋ong-term Organization

CMS Induction Course - Calorimetry

39

Issues since startup: HCAL

• Bad channels (out of 9072 total)

- 2 malfunctioning HB & 1 malfunctioning HE channel since 2010
- 3 dead HB channels (front-end chip QIE problems) since 2011
 - All but one HE channel fixed during LS1

Problematic channels

Basics

Technology Data Acquisition Construction Issues

Performance ₋ong-term Organization

- One HPD (HB, 18 channels) had low bias voltage since 2010 longer signal
- Three HB/HE QPLL modules (timing synchronization for 3x36 channels) were not in exact synch with LHC clock
 - All issues fixed during LS1

• HO (not critical for HCAL operation) had several issues during Run I and was only partly operational

• Now the entire HO (with new Silicon Photomultipliers – SiPMs – instead of HPDs) is fully recommissioned and ready to take data

Fraction of working channels at the end of Run I and when Run II starts

HB: 99.81% → 100% HE: 99.97% → 99.97% HO: very little → 100% HF: 100% → 99.9%

Basics Technology Data Acquisition Construction Issues Performance

PERFORMANCE: ECAL

CMS Induction Course - Calorimetry

41

Basics

Technology Data Acquisition

Performance

ECAL: $H \rightarrow \gamma \gamma$ **Resolution**

SM Higgs boson discovery potential in the H→ γγ channel depends on:
Simulated 120 GeV Higgs

 $\frac{S_{E_1}}{E_1}, \frac{S_{E_2}}{E_2} = \text{of the 2 photons} \quad \frac{S_q}{\tan(\frac{q}{2})} = \text{resolution of angle} \\ \text{between 2 photons}$

-Background rejection (e.g. prompt γ vs π^0)

• Energy resolution (σ_E/E) for e^{\pm}/γ quantified as:

$$\frac{\sigma_E}{E} = \frac{\mathbf{A}}{\sqrt{E}} \oplus \frac{\mathbf{B}}{E} \oplus \mathbf{C}$$

- A =Stochastic term
 - (quantifies effects of energy fluctuations)
- \boldsymbol{B} = Noise term

(quantifies electronics and/or pileup noise)

C = Constant term (quality of construction, stability, uniformity)

ECAL Qualification in beam tests

- ECAL "standalone" performance thoroughly studied at test beams
 - No magnetic field, no material upstream of ECAL
 - Negligible systematic term from channel response variations
- Energy resolution for central impact on 3x3 arrays of barrel crystals:

Basics Technology Data Acquisition Construction Issues Performance

- Constant term dominated by longitudinal non-uniformity of light collection
 - Limited to less than 0.3% at construction
- Results compared to and used to tune simulation

- Additional contribution to the energy resolution in CMS:
 - Constant term: environmental stability and response uniformity to be kept < 1% (assumed 0.4% in CMS Physics TDR)
 - Electron bremsstrahlung / photon conversion in material upstream of ECAL → affects all terms

Performance: Electronics & Trigger

Basics

Technology Data Acquisition

Performance

ECAL Energy Estimation & Clustering

Goal: obtain the most accurate estimate of e/γ energy

0.2 √s = 8TeV, L = 19.6 fb⁻¹ SuperCluster വ uncorrected 0.18 o ■^{SuperCluster} 0.16 ents corrected ECAL barrel 0.14 Ň 0.12 0.1 0.08 0.06 0.04 0.02 100 120 60 80 M_{ee} (GeV/c²)

Impact on the $Z \rightarrow e^+e^-$ energy scale and resolution from the incorporation of sophisticated "superclustering" and cluster correction algorithms

Basics Technology

Data Acquisition

Performance

ECAL Time-dependent Instabilities

- Minimize environmental instabilities
 - Achieved $\Delta T < 0.02^{\circ}$ C, $\Delta V_{APD} < 20$ mV (well within spec.)
- Radiation-induced effects heavily η dependent
 - Crystal transparency changes
 - Colour-centre formation, but no damage to scintillation mechanism
 - Electromagnetic damage is spontaneously recovered at room temperature
 - Fast damage and recovery on the order of hours
 - Hadronic damage causes permanent (at room temp.) and cumulative defects
 - VPT photocathode conditioning with accumulated charge*

CMS Induction Course - Calorimetry

46

ECAL Monitoring the Response Stability

- Light from laser (447nm, ~peak emission) injected through fibres into each crystal
 - One (averaged) measurement per crystal every 40 minutes
 - Normalized with reference PN diodes
 - Corrected for differences in light paths for scintillation and laser light
 - Corrections ready for prompt reconstruction in less than 48 hours!

• Validity checked using electrons from W decays

Basics Technology Data Acquisition Construction Issues

Performance Long-term

Organization

CMS Induction Course - Calorimetry

(Inter)Calibrating the ECAL

Basics Technology

Performance

(Inter)Calibrating the ECAL

Combining all calibration methods

 $\Box \phi$ -symmetry limited by systematic uncertainties

-E/p statistically limited for $|\eta| > 1$

 $\Box \pi^0/\eta$ limited by systematic uncertainties for $|\eta|>2$

Combination Precision

Barrel: <1% (~0.4% for $|\eta|$ <1)

Endcaps: ~2% (almost everywhere)

ECAL Energy Corrections

- Correct energy clusters for:
 - Energy loss in material upstream of ECAL
 - e^+e^- bremsstrahlung and γ conversions
 - Local shower containment
 - Crystal geometry
- Corrections currently derived with an MC-driven multivariate (MVA) technique
 - Using shower location, shape and global event variables

Use R₉ shower-shape variable to discriminate:

- low / high bremsstrahlung electrons
- unconverted / converted photons

ECAL Energy Resolution

CMS Induction Course - Calorimetry

ECAL Resolution Stability with Time

- Width of the Z→e⁺e⁻ peak fitted with a Crystal Ball (CB) function convoluted with a Gaussian
 - Use CB width as a measure of the mass resolution
- "Prompt" reconstruction (<48 hours after data taken) already excellent
- Absolute resolution and stability improved further once final intercrystal calibration applied for a "re-reconstruction", especially in the endcaps

ECAL Benchmark: $H \rightarrow \gamma \gamma$

- The energy resolution measured in data with $Z \rightarrow ee$ is used to model the expected $H \rightarrow \gamma \gamma$ signal in the simulation
- Steady progress and excellent results

Basics Technology Data Acquisition Construction Issues Performance Long-term

PERFORMANCE: HCAL

Basics

HCAL: Pre-Calibration & $\sigma_{\rm E}/{\rm E}$

 LED: illuminate megatiles for checks of FE electronics; monitoring stability of HPD gains

HCAL: Intercalibration in Run I

- **Φ-symmetry intercalibration uses two independent methods (giving similar results)**
 - Method of moments (variance) on non-zero-suppressed minimum-bias data
 - Iterative method on high-energy e/γ -triggered events
 - \rightarrow weighted sum of both methods used for final intercalibration coefficients

CMS Induction Course - Calorimetry

HCAL: Absolute Calibration

CMS Induction Course - Calorimetry

HCAL: Time-dependent Variations

HPD pixel response drifts (HB, HE, HO)

PMT gain loss (HF)

n=2.9

n=5.1

100

n=3.5..4.2

200

Related to luminosity

HF Depth=1: LED ratio vs time

Stop

-end

eal

400

500

Time, days since Feb 10, 2011

600

300

• Changes are consistent with photocathode migration in HPDs

Basics Technology Data Acquisition Construction Issues Performance

Long-term Organization

Both effects addressed during Run I by applying calibration corrections at various stages of data-taking and analysis Adjustment of energy look-

- Adjustment of energy lookup-tables for L1 trigger
- Adjustment of calibration constants in HLT and offline analysis

CMS Induction Course - Calorimetry

0

signal strength

Relative

1.02

0.98

0.96 0.94

0.92

0.88

0.86

0.84

0.82

0.8

0.78

0.76 0.74

58

10

HCAL: Radiation-induced effects

HE:

- Loss of scintillation and reduced transmission of light
- Effect observed in Run1 at the level of 30% in the highest η region of HE (η=3)

Basics

Technology Data Acquisition Construction Issues Performance Long-term Organization

HF:

- Reduced light transmission in quartz fibres
- Effect observed during Run1 at the level of 10% in the highest η region of HF (η=5)

HCAL: Energy Response

CMS Induction Course - Calorimetry

HCAL: Missing-E_T Resolution

- Missing E_T (MET) calculated using a combination of measurements in all calorimeters (CaloMET) and also the Tracking detectors (Particle Flow - PF_MET and Tracker-Corrected - TC_MET)
 - Differences in responses & non-linearities necessitate
 - E_T and η -dependent corrections
 - Special filters developed to eliminate noise, which could otherwise affect MET performance

Resolution for the calibrated MET for multijet events with two jets with $p_T>25$ GeV

The Particle Flow technique gives a substantial improvement in MET resolution

Basics

Technology Data Acquisition Construction Issues Performance

Drganization

Basics

Technology Data Acquisition

Performance

HCAL: Luminosity Measurement

CERN

- CMS provides real-time monitoring of the LHC luminosity to determine an overall normalization for use in physics analyses
 - The online luminosity measurement is based on the forward hadronic calorimeter (HF)
- The HF Lumi is subject to calibration drift as a result of gain changes in the HF PMTs and possible other effects. Such drifts typically occur over a long period of time.

Basics Technology Data Acquisition Construction Issues Performance Long-term

BENCHMARK PHYSICS

CMS Induction Course - Calorimetry

63

CMS Induction Course - Calorimetry

Basics

$H \rightarrow ZZ \rightarrow 4$ leptons

CMS Induction Course - Calorimetry

65

HCAL: Benchmark Physics

 H(ττ) candidate event in the VBF channel, as indicated by the presence of two forward jets (in green) and a central jet (blue) from hadronically decaying tau

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

CMS Induction Course - Calorimetry

Basics

HCAL: Benchmark Physics

• Event with several hadronic jets and large MET, as it would be typical of a gluino-mediated bottom or top squark pair production

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

PERSPECTIVES FOR THE LONG-TERM FUTURE: HIGH-LUMINOSITY LHC

Perspectives for the Future

• CMS has collected about 30 fb⁻¹ so far

- LHC Run II (2015-2017) will be at higher energy (~13 TeV) and at an instantaneous luminosity up to ~2x10³⁴ cm⁻²s⁻¹ → 2x higher than CMS was designed for
 - But ECAL and HCAL will still be highly performant!
- Expect 300-500 fb⁻¹ by the end of nominal LHC operation (~2023)
- High Luminosity LHC (HL-LHC) will take this to ~3000 fb⁻¹ by ~2035
 - \rightarrow we have collected ~1% of the total data expected!
- HL-LHC conditions will be even more challenging than LHC
 - Collision pileup ~140 (c.f. ~20 in LHC)
 - Up to 65 Gy/hour in endcaps (c.f. ~6.5 Gy/h in LHC; barrel is ~20x lower)
 - Up to $2x10^{14}$ hadrons/cm² in endcaps (c.f. $\sim 3x10^{13}$ h/cm² in LHC; barrel is $\sim 100x$ lower)

Basics

Technology Data Acquisition Construction Issues Performance Long-term Organization

CMS Induction Course - Calorimetry

CMS Induction Course - Calorimetry

ECAL Perspectives for the Future

- Huge amount of work to qualify ECAL long-term performance
 - Main concern is crystal transparency degradation with integrated hadron fluence

EE and ES will be ok until 500 fb⁻¹; they need to be replaced for HL-LHC

HCAL Perspectives for the Future

• Expected radiation damage to HE by ~2023

HB and HF will be highly performant to 3000 fb⁻¹ Endcaps will be ok until 500 fb⁻¹; they need to be replaced for HL-LHC

Note: the Phase1 upgrade in LS2 will extend the performance of HE to LS3.

- QE of SiPMs x3 higher wrt HPDS
- finer depth segmentation allowing re-weighting for radiation damage)

CMS Calorimetry for HL-LHC

Two concepts for forward calorimetry:

- Keep the separation between HE and EE
 - Rebuild HE with rad-hard scintillators
 - + fibres, with improved granularity

 Sampling EE in "Shashlik" configuration, with W absorbers and crystal scintillators (LYSO or CeF₃)

Basics Technology Data Acquisition Construction Issues Performance Long-term

- Combine HE & EE functionality
 - High-granularity sampling calorimeter using same technology for HE and EE
 - W absorbers interspersed with 690 m² of silicon sensors

Decision to be taken in 2015

CMS Induction Course - Calorimetry

Basics Technology Data Acquisition Construction Issues Performance Long-term Organization

ORGANIZATION

ECAL Organization 2014

CMS Induction Course - Calorimetry

HCAL Organization 2014

CMS Induction Course - Calorimetry

THANKS FOR YOUR ATTENTION!

CMS Induction Course - Calorimetry

77

MORE INFORMATION

CMS Induction Course - Calorimetry

78

ECAL & HCAL Posters

CMS Induction Course - Calorimetry

Some Useful Links

• ECAL Web site:

https://twiki.cern.ch/twiki/bin/viewauth/CMS/DrupalEcal

- HCAL Web site: http://cmshcal.web.cern.ch/cmshcal/
- "The CMS Experiment at the LHC", 2008 J. INST 3
 S08004 <u>http://iopscience.iop.org/1748-0221/3/08/S08004</u>

ECAL-related Bibliography

[1] CMS Coll., Letter of Intent: by the CMS Collaboration for a general purpose detector at the LHC, <u>CERN-LHCC-92-003</u> (1992)
 [2] CMS Coll., CMS, the Compact Muon Solenoid: Technical Proposal, <u>CERN-LHCC-94-38</u> (1994)
 [3] P. Adzic et al (ECAL Group), Energy resolution of the barrel of the CMS Electromagnetic Calorimeter, <u>J. Inst. 2 P04004</u> (2007)
 [4] CMS Coll., CMS, the Design of the LHC, <u>CERN-LHCC-94-38</u> (1994)

[4] CMS Coll., Physics Tech. Design Report, Vol. I <u>CERN-LHCC-2006-001</u> (2006) and Vol II, <u>CERN-LHCC-2006-002</u> (2006), published as J. Phys. G Nucl. Part. Phys. 34 995-1579 (2006)

[5] CMS-ECAL Technical Design Report, <u>CERN-LHCC 97-33</u> (1997)

[6] CMS Coll., Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at $\sqrt{S} = 7$ TeV, <u>J. Inst. 8</u> <u>P09009</u> (2013)

[7] CMS Coll., Performance and operation of the CMS electromagnetic calorimeter, J. Inst. 5 T03010 (2010)

[8] CMS Coll., Electromagnetic calorimeter commissioning and first results with 7 TeV data, <u>CMS-NOTE-2010/012</u> (2010)

[9] D.E. Leslie (for CMS Coll.), *The effect of pulse rate on VPT response and the use of LED light to improve stability*, presented at ICATPP09, CMS-CR-2009-284 (2009)

[10] F. Ferri (for CMS Coll.), Monitoring and correcting for response changes in the CMS lead-tungstate electromagnetic calorimeter, J. Phys.: Conf. Ser. 404 012041 (2012)

[11] M. Anfreville et al, Laser monitoring system for the CMS lead tungstate crystal calorimeter, NIM A594 (2008) 292-320

[12] L. Zhang (for CMS Coll.), A diode-pumped solid state blue laser for monitoring the CMS lead tungstate crystal calorimeter at the LHC, J. Phys.: Conf. Ser. 404 012042 (2012)

[13] CMS Coll., Updated measurements of the Higgs boson at 125 GeV in the two photon decay channel, <u>CMS-PAS-HIG-13-001</u> (2013)
 [14] CMS Coll., Search for a Higgs boson decaying into two photons in the CMS detector, <u>CMS-PAS-HIG-11-021</u> (2011)

[15] CMS Coll., A search using multivariate techniques for a standard model Higgs boson decaying into two photons, <u>CMS-PAS-HIG-12-001</u> (2012)

[16] CMS Coll., Evidence for a new state decaying into two photons in the search for the standard model Higgs boson in pp collisions, <u>CMS-PAS-HIG-12-015</u> (2012)

[17] CMS Coll., Updated results on the new boson discovered in the search for the standard model Higgs boson in the ZZ to 4 leptons channel at sqrt(s) = 7 and 8 TeV, <u>CMS-PAS-HIG-12-041</u> (2012)

[18] CMS Coll., Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at sqrt s = 7 and 8 TeV, <u>CMS-PAS-HIG-13-002</u> (2013)

[19] CMS Coll., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30

[20] CMS Coll., Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, <u>CMS-PAS-HIG-13-005</u> (2013)

CMS Induction Course - Calorimetry

81

PARES			
PARES			
PARES			
	PARES		
	PARES		

CMS Induction Course - Calorimetry

82

TRIGGERING

CMS Induction Course - Calorimetry

83

Level-1 e/y Trigger

CERN

♦ Use coarse information (1 tower = 5x5 crystals in barrel, more complex in endcaps)
♦ Build 4 L1 EM candidates (most energetic pair of towers) per region (4x4 towers)
♦ Keep the 4 candidates with highest E_T in the entire ECAL

VETOES

- Fine Grain (FG): 90% tower E_T contained within 2 adjacent strips (tower E_T >6 GeV)
- H/E : ratio of E_T in the corresponding HCAL and ECAL towers < 5% (L1 E_T > 2 GeV)

STREAMS

- Isolated stream :
 - at least one « quiet corner » $\Leftrightarrow \sum (5 \text{ adjacent towers}) < 3.5 \text{ GeV}$
 - 8 neighbour towers must pass FG and H/E selections
- Non-Isolated stream

CMS Induction Course - Calorimetry

L1 Jet Trigger

85

$H \rightarrow ZZ \rightarrow 4$ leptons

- Final state with 4e particularly challenging
 - -Softest electron often has $p_T < 15 \text{ GeV}$
 - Difficult kinematic region due to B-field and bremsstrahlung
 - Crucial to identify and reconstruct electrons down to $p_T \sim 7 \text{ GeV}$

ECAL Benchmark: $H \rightarrow \gamma \gamma$

- Look for a small narrow excess of γγ events on a falling background
- Key analysis requirements:
 - Excellent γ energy resolution
 - Highly efficient γ ID and $\gamma\gamma$ vertex-finding

MC bkg used only for analysis optimization Real background shape derived from data

CMS Induction Course - Calorimetry

Summary

- The CMS ECAL meets the high expectations from the design phase
 - A Higgs boson was discovered with the strongest signals in the $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ \rightarrow 41$ channels
 - -Excellent energy resolution in the ECAL barrel drives the sensitivity for $H \rightarrow \gamma \gamma$
 - ~1% diphoton mass resolution for unconverted photons with |h| < 1
 - Energy resolution is continuously being improved. Working on improving:
 - Calibration and time-dependent response corrections
 - Local containment and upstream-material corrections
- HL-LHC will require new ECAL endcap, but barrel will remain highly performant until at least 3000fb⁻¹
- Looking forward to the next LHC run starting 2015!

Discovery of a Higgs boson

First announced on 4th July 2012 - 5 channels examined H→gg H→ZZ→41 H→WW H→bb H→tτ All critically depend on ECCAL

- Analysis of 2010-2012 data finalizing
- Best mass estimate comes from the two "golden" channels

Higgs boson has a mass of around 125.6 GeV and its decay rates are consistent with the Standard Model predictions...but what will we find in Run 2 of LHC?

CMS Induction Course - Calorimetry

ECAL Groups Worldwide

CMS Induction Course - Calorimetry

90

Idea of Endcap Preshower

One of the main physics goals of CMS is search for SM Higgs If $m_{\rm H} < 150 \text{ GeV/c}^2$ best chance is through 2γ decay

The CMS ECAL: Silicon Sensors

CMS Induction Course - Calorimetry

92

Modifications to ECAL Barrel

Change front-end (and back-end) electronics

- Driven by HL-LHC requirements of trigger system
 - 1 MHz L1 rate (c.f. 100kHz now)
 - ~10-20 μsec latency (c.f. 6.4 μsec now)
- Move to individual crystal readout at 40 MHz
 - All triggering moved off-detector for ultimate flexibility
 - Improved rejection of APD anomalous signals at L1
- Requires removal of all ECAL Supermodules, upgrade, then reinstallation

• APDs also suffer from increasing leakage currents \rightarrow increased noise

- Can mitigate by cooling EB by 8-10°C
- Currently studying technical feasibility & implications

Time-dependent Instabilities

- Radiation-induced crystal transparency losses (cont.)
 - Hadronic damage causes deeper defects; permanent (at room temperature) and cumulative

CMS Induction Course - Calorimetry