

Electromagnetic probes of the QGP

Elena Bratkovskaya

Institut für Theoretische Physik & FIAS, Uni. Frankfurt

7 May 2014, CERN

Ultimate goals of heavy-ion research

Electromagnetic probes: photons and dileptons

Advantages:

✓ dileptons and real photons are emitted from different stages of the reaction and not effected by final-state interactions

✓ provide undistorted information about their production channels

✓ promising signal of QGP – ,thermal' photons and dileptons

→ Requires theoretical models which describe the dynamics of heavy-ion collisions during the whole time evolution!

Disadvantages:

- Iow emission rate
- production from hadronic corona
- many production sources which cannot be individually disentangled by experimental data

From hadrons to partons

In order to study the dynamics of the phase transition from hadronic to partonic matter – Quark-Gluon-Plasma – we need a consistent non-equilibrium transport model with constraint parton-parton interactions (i.e. between quarks and gluons) beyond strings!

explicit phase transition from hadronic to partonic degrees of freedom
 IQCD EoS for partonic phase

□ Non-equilibrium transport theory: follows from the off-shell Kadanoff-Baym equations for the Green-functions $S_h^{<}(x,p)$ in phasespace representation for the partonic and hadronic phase

Parton-Hadron-String-Dynamics (PHSD)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ ST 168 (2009) 3

> A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

Dynamical QuasiParticle Model (DQPM)

Dynamical QuasiParticle Model (DQPM) - Basic ideas:

DQPM describes **QCD** properties in terms of **,resummed' single-particle Green's** functions – in the sense of a two-particle irreducible (2PI) approach:

Gluon propagator: $\Delta^{-1} = \mathbf{P}^2 - \mathbf{\Pi}$ gluon self-energy: $\mathbf{\Pi} = \mathbf{M}_g^2 - \mathbf{i} 2 \Gamma_g \omega$

gw

Quark propagator: $S_q^{-1} = P^2 - \Sigma_q$ quark self-energy: $\Sigma_q = M_q^2 - i2\Gamma_q \omega$

the resummed properties are specified by complex self-energies which depend on temperature:

- -- the real part of self-energies (Σ_q , Π) describes a dynamically generated mass (M_q , M_g);
- -- the imaginary part describes the interaction width of partons (Γ_q, Γ_g)

space-like part of energy-momentum tensor $T_{\mu\nu}$ defines the potential energy density and the mean-field potential (1PI) for quarks and gluons (U_q, U_g)

2PI framework guaranties a consistent description of the system in- and out-off equilibrium on the basis of Kadanoff-Baym equations

A. Peshier, W. Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

<u>Properties</u> of interacting quasi-particles: massive quarks and gluons (g, q, q_{bar}) with Lorentzian spectral functions :

$$(i=q,\overline{q},g) \qquad \rho_i(\omega,T) = \frac{4\omega \Gamma_i(T)}{\left(\omega^2 - \overline{p}^2 - M_i^2(T)\right)^2 + 4\omega^2 \Gamma_i^2(T)}$$

• Modeling of the quark/gluon masses and widths \rightarrow HTL limit at high T

• quarks:
mass:
$$M_{q(\bar{q})}^{2}(T) = \frac{N_{c}^{2} - 1}{8N_{c}}g^{2}\left(T^{2} + \frac{\mu_{q}^{2}}{\pi^{2}}\right)$$

width: $\Gamma_{q(\bar{q})}(T) = \frac{1}{3}\frac{N_{c}^{2} - 1}{2N_{c}}\frac{g^{2}T}{8\pi}\ln\left(\frac{2c}{g^{2}} + 1\right)$
 $running coupling (pure glue):
 $q^{2}(T)$
 $q^{2}$$

$$\alpha_s(T) = \frac{g(T)}{4\pi} = \frac{12\pi}{(11N_c - 2N_f)\ln[\lambda^2(T/T_c - T_s/T_c)^2]}$$

☐ fit to lattice (lQCD) results (e.g. entropy density)

with 3 parameters: $T_s/T_c=0.46$; c=28.8; $\lambda=2.42$ (for pure glue N_f=0)

DQPM: Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

The Dynamical QuasiParticle Model (DQPM)

Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007)

I. PHSD - basic concept

I. From hadrons to QGP:

LUND string model

ā a ā a

QGP phase:

 $\epsilon > \epsilon_{\rm critical}$

Initial A+A collisions – as in HSD:

R

- string formation in primary NN collisions
- string decay to pre-hadrons (B baryons, m mesons)

Formation of QGP stage by dissolution of pre-hadrons (all new produced secondary hadrons) into massive colored quarks + mean-field energy

$$\rightarrow q \bar{q} q, m \rightarrow q \bar{q} \quad \forall U_q$$

based on the Dynamical Quasi-Particle Model (DQPM) which defines quark spectral functions, i.e. masses $M_q(\varepsilon)$ and widths $\Gamma_q(\varepsilon)$

+ mean-field potential U_q at given ε – local energy density

($\boldsymbol{\varepsilon}$ related by IQCD EoS to T - temperature in the local cell)

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; EPJ ST 168 (2009) 3; NPA856 (2011) 162.

II. PHSD - basic concept

II. Partonic phase - QGP:

quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by the DQPM

□ in self-generated mean-field potential for quarks and gluons U_q, U_g from the DQPM

□ EoS of partonic phase: ,crossover' from lattice QCD (fitted by DQPM)

□ (quasi-) elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

- (quasi-) elastic collisions:
 - $q + q \to q + q \qquad g + q \to g + q$ $q + \overline{q} \to q + \overline{q} \qquad g + \overline{q} \to g + \overline{q}$ $\overline{q} + \overline{q} \to \overline{q} + \overline{q} \qquad g + g \to g + g$

inelastic collisions: (Breight-Wigner cross sections)

$$\begin{cases} q + \overline{q} \to g \\ g \to q + \overline{q} \end{cases}$$

20

III. <u>Hadronization:</u>

Hadronization: based on DQPM

- massive, off-shell (anti-)quarks with broad spectral functions hadronize to off-shell mesons and baryons or color neutral excited states - ,strings' (strings act as ,doorway states' for hadrons)

> $g \rightarrow q + \overline{q}, \quad q + \overline{q} \leftrightarrow meson \ ('string')$ $q + q + q \leftrightarrow baryon \ ('string')$

• Local covariant off-shell transition rate for q+qbar fusion $\Rightarrow \text{ meson formation:} \qquad Tr_{j} = \sum_{j} \int d^{4}x_{j} d^{4}p_{j}/(2\pi)^{4} \\ \frac{dN^{q+\bar{q}\to m}}{d^{4}x \ d^{4}p} = Tr_{q}Tr_{\bar{q}}\delta^{4}(p-p_{q}-p_{\bar{q}})\delta^{4}\left(\frac{x_{q}+x_{\bar{q}}}{2}-x\right)\delta(flavor,color) \\ \cdot N_{q}(x_{q},p_{q})N_{\bar{q}}(x_{\bar{q}},p_{\bar{q}})\cdot\omega_{q}\rho_{q}(p_{q})\cdot\omega_{\bar{q}}\rho_{\bar{q}}(p_{\bar{q}})\cdot|M_{q\bar{q}}|^{2} W_{m}\left(x_{q}-x_{\bar{q}},p_{q}-p_{\bar{q}}\right)$

N_j(x,p) is the phase-space density of parton j at space-time position x and 4-momentum p
 W_m is the phase-space distribution of the formed ,pre-hadrons' (Gaussian in phase space)
 |M_{qq}|² is the effective quark-antiquark interaction from the DQPM

IV. <u>Hadronic phase:</u> hadron-string interactions – off-shell HSD

Properties of parton-hadron matter – shear viscosity

 η /s using Kubo formalism and the relaxation time approximation (,kinetic theory')

T=T_C: η /s shows a minimum (~0.1) close to the critical temperature

T>T_C : QGP - pQCD limit at higher temperatures T >3 Tc

TTTC: fast increase of the ratio η /s for hadronic matter \rightarrow

lower interaction rate of hadronic system

 smaller number of degrees of freedom (or entropy density) for hadronic matter compared to the QGP

Eur. Phys. J. C 70, 243 (2010).

QGP in PHSD = strongly-interacting liquid

Au+Au, 21.3 TeV, central

PHSD for HIC (highlights)

Photons from SPS to LHC

I. Direct photon flow puzzle

EMMI Rapid Reaction Task Force ,Direct Photon Flow Puzzle', 24-28 February 2014, GSI Darmstadt, Organizers: Klaus Reygers and Johanna Stachel

QGP radiation occurs at early time when flow is not yet developed!

Olena Linnyk et al., PRC 88 (2013) 034904; arXiv:1304.7030

Photons from the hot and dense medium

from the QGP via partonic interactions:

Compton scattering

Compton scattering q-qbar annihilation

Photon sources:

from hadronic sources:

•decays of mesons: $\pi \to \gamma + \gamma, \ \eta \to \gamma + \gamma, \ \omega \to \pi + \gamma$ $\eta' \to \rho + \gamma, \ \phi \to \eta + \gamma, \ a_1 \to \pi + \gamma$

•secondary meson interactions: $\pi + \pi \rightarrow \rho + \gamma, \ \rho + \pi \rightarrow \pi + \gamma$

using the off-shell extension of Kapusta et al. in PRD44 (1991) 2774

• meson-meson and meson-baryon bremsstrahlung: $m+m \rightarrow m+m+\gamma, \quad m+B \rightarrow m+B+\gamma, \quad m=\pi,\eta,\rho,\omega,K,K^*,\ldots, \quad B=p,\Delta,\ldots$ using the soft-photon approximation

Direct photons at SPS: WA98

Updated HSD (2014) including meson-baryon bremsstrahlung

•HSD: meson-meson and meson-baryon bremsstrahlung using SPA

Bremsstrahlung rates are uncertain !!!

EMMI Rapid Reaction Task Force , Direct Photon Flow Puzzle', 24-28 February 2014, GSI Darmstadt

Meson-meson Bremsstrahlung at SPS within SPA

C. Gale, J. Kapusta, Phys. Rev. C 35 (1987) 2107

Soft Photon Approximation $m_1+m_2 \rightarrow m_1+m_2+\gamma$

$$q_0 \frac{d^3 \sigma^{\gamma}}{d^3 q} = \frac{\alpha}{4\pi} \frac{\bar{\sigma}(s)}{q_0^2}$$
$$\bar{\sigma}(s) = \frac{s - (M_1 + M_2)^2}{2M_1^2} \sigma(s),$$

 $\sigma(s)$ – elastic meson-meson cross section $m_1+m_2 \rightarrow m_1+m_2$ -???

Taken σ(s) =10 mb for ALL m₁+m₂ channels !
 No isospin factors!

→ Needs to be improved!

E. B., S.M. Kiselev, and G.B. Sharkov, PR C78 (2008) 034905

mm bremsstrahlung beyond SPA

Photon spectra at RHIC

• π^0 and η subtracted photon spectrum

Sum

OGP

pQCD

hadrons:

PHSD:

Au+Au, s_{NN}^{1/2}=200 GeV, MB, |y|<0.35

PHENIX, PRL 104, 132301

 $mm \rightarrow mm\gamma$

 $mB \rightarrow mB\gamma$

 $\pi\pi \rightarrow \rho\gamma, \pi\rho \rightarrow \pi\gamma$

3

decays of ω, η', φ, a

The 'effective temperature' T _{eff} :			
The slope parameter T_{eff} (in MeV)			
PHSD			PHENIX
QGP	hadrons	Total	[38]
260 ± 20	200 ± 20	220 ± 20	$233 \pm 14 \pm 19$

 $p_{T} [GeV/c]$

1

• π^0 and η decays dominate the low p_T spectra

• **QGP sources** are mandatory to explain the spectrum (~50%), but hadronic sources are considerable, too !

Are thermal photons a QGP thermometer?

Static source:

* Pictures from Charles Gale talk at ITP Colloquium, Frankfurt, April 2014

 $\beta=1/T$, T is a ,true' temperature

→Doppler shift:

effective T_{eff} deduced from the slopes is NOT a ,true' temperature

$$T_{eff} = \sqrt{\frac{1+v}{1-v}}T$$

Time evolution of the effective temperature

□ (2+1)d viscous hydro (Ohio)

C. Shen et al., PRC89 (2014) 044910; arXiv:1308.2440

Pion elliptic flow is reproduced in PHSD and underestimated in HSD (i.e. without partonic interactions)

■ → large inclusive photon v₂ - comparable to that of hadrons - is reproduced in PHSD, too, because the inclusive photons are dominated by the photons from pion decay

Elliptic flow of direct photons at RHIC

O. Linnyk et al. Phys.Rev. C88 (2013) 034904; Phys. Rev. C 89 (2014) 034908

Towards the solution of the v₂ puzzle

Is bremsstrahlung a solution?

Bremsstrahlung increased by a factor 2

(might be due to the uncertainties in SPA and mm and mB elastic cross sections)

Other ideas:

• Early-time magnetic field effects ? (Basar, Kharzeev, Skokov, PRL (2012); Basar, Kharzeev, Shuryak, arXiv:1402.2286)

- Glasma effects ? (L. McLerran)
- Primodial flow ? (R. Rapp, H. van Hees)

➢ More experimental information is needed → new PHENIX data on centrality dependence

???

Centrality dependence of the direct photon yield

PHST

O. Linnyk et al, Phys. Rev. C 89 (2014) 034908

- **PHSD:** scaling of the direct photon yield with the number of participants to the power 1.5
- similar results from (2+1)d viscous hydro (Ohio): HG ~1.46, QGP ~2

→ indication for a hadronic origin ?!

Centrality dependence of the ,thermal' photon v₂

PHST

□ The contribution of the QGP photons decreases substantially for more peripheral collisions and the photon elliptic flow increases accordingly.

O. Linnyk et al, Phys. Rev. C 89 (2014) 034908

PHSD results for p+p and p+Pb at LHC

0.9

0.8

0.7

0.6

0.5

0.4

0

< p_r> [GeV/c]

(d)

5

 $\mathbf{p} - \mathbf{p}, \ \sqrt{\mathbf{s}_{NN}} = 7 \text{ TeV}$

 $|\eta| < 0.3, \ 0.15 < p_{\perp} < 10 \text{ GeV/c}$

15

10

1222222288888889

ALICE

- PHSD

30

35

25

20

N_{ch}

pp at 7 TeV (charged particles)

PHSD: V. Konchakovski et al., arXiv:1401.4409

PHSD results for Pb+Pb at 2.76 TeV

□ Charged particle multiplicity vs centrality

 \Box centrality dependence of v₂, v₃, v₄ for charged particles

8

2

10

12

3

PHSD results for Pb+Pb at 2.76 TeV: photons

□ Is the considerable elliptic flow of direct photons at the LHC of hadronic origin ?!

□ The photon elliptic flow at LHC is lower than at RHIC due to a larger/longer relative QGP contribution.

Dileptons: from SPS to LHC

II. PHENIX dilepton puzzle

Dilepton sources

from the QGP via partonic (q,qbar, g) interactions:

 from hadronic sources:
 direct decay of vector mesons (ρ,ω,φ,J/Ψ,Ψ')

•**Dalitz decay of mesons** and baryons $(\pi^0, \eta, \Delta,...)$

•correlated D+Dbar pairs

•radiation from multi-meson reactions $(\pi+\pi, \pi+\rho, \pi+\omega, \rho+\rho, \pi+a_1) - ,4\pi^{\circ}$

→ Dileptons are an ideal probe to study the properties of the hot and dense medium

Dileptons at SPS: NA60

Acceptance corrected NA60 data

* First discussion on "4π" : C. Song, C.M. Ko and C. Gale, PRD50 (1994) R1827

NA60: m_T spectra

Conjecture:

 spectrum from sQGP is softer than from hadronic phase since quark-antiquark annihilation occurs dominantly before the collective radial flow has developed (cf. NA60)

> O. Linnyk, E.B., V. Ozvenchuk, W. Cassing and C.-M. Ko, PRC 84 (2011) 054917

PHENIX vs. STAR dilepton spectra

PHSD -

x10

PHENIX: Peripheral collisions (and pp) are well described, however, central fail!

STAR data are well described!

O. Linnyk et al., PRC 85 (2012) 024910

LHC: dileptons from pp and pPb

□ dileptons from pp at s^{1/2}=2.76 and 7 TeV

O. Linnyk et al., Phys.Rev. C87 (2013) 014905; arXiv:1208.1279

□ PHSD predictions for the dilepton spectra from pPb at s^{1/2}=5 TeV

O. Linnyk, Oct. 2013

LHC: mass spectra with exp. cuts

I. Direct photons - the photons produced in the QGP contribute up to 50% to the observed spectrum, but have small v_2

• Large direct photon v_2 – comparable to that of hadrons – is attributed to the intermediate hadronic bremsstrahlung and hadronic scattering channels not subtracted from the data

• The QGP phase causes the strong elliptic flow of photons indirectly, by enhancing the v_2 of final hadrons due to the partonic interaction in terms of explicit parton collisions and the partonic mean-field potentials

II. Dilepton spectra - according to the PHSD predictions - show sizeable changes due to the different in-medium scenarios (as collisional broadening and dropping mass) which can be observed experimentally

In-medium effects can be observed at all energies from SIS to LHC

•At SPS, RHIC and LHC the QGP (qbar-q) dominates at M>1.2 GeV

PHSD group

FIAS & Frankfurt University Elena Bratkovskaya Rudy Marty Hamza Berrehrah Daniel Cabrera Taesoo Song Andrej Ilner

Giessen University Wolfgang Cassing Olena Linnyk Volodya Konchakovski Thorsten Steinert Alessia Palmese

External Collaborations

SUBATECH, Nantes University: Jörg Aichelin Christoph Hartnack Pol-Bernard Gossiaux Vitalii Ozvenchuk

> Texas A&M University: Che-Ming Ko

> > JINR, Dubna: Viacheslav Toneev Vadim Voronyuk

BITP, Kiev University: Mark Gorenstein

Barcelona University: Laura Tolos Angel Ramos

Universitat Autònomal de Barcelona

--Back up slides--

Dynamical description of strongly interacting systems

□ Semi-classical BUU→ solution for weakly interacting systems of particles

How to describe strongly interacting systems?!

□ Quantum field theory → Kadanoff-Baym dynamics for resummed(!) single-particle Green functions S[<]

η

$$\hat{S}_{0x}^{-1} S_{xy}^{<} = \Sigma_{xz}^{ret} \odot S_{zy}^{<} + \Sigma_{xz}^{<} \odot S_{zy}^{adv}$$

Green functions S[<]/self-energies Σ:

Integration over the intermediate spacetime

(1962)

$$iS_{xy}^{<} = \eta \langle \{ \Phi^{+}(y) \Phi(x) \} \rangle$$

$$iS_{xy}^{>} = \langle \{ \Phi(y) \Phi^{+}(x) \} \rangle$$

$$iS_{xy}^{c} = \langle T^{c} \{ \Phi(x) \Phi^{+}(y) \} \rangle - causal$$

$$iS_{xy}^{a} = \langle T^{a} \{ \Phi(x) \Phi^{+}(y) \} \rangle - anticausal$$

$$S_{xy}^{ret} = S_{xy}^{c} - S_{xy}^{<} = S_{xy}^{>} - S_{xy}^{a} - retarded \qquad \hat{S}_{\theta x}^{-1} \equiv -(\partial_{x}^{\mu} \partial_{\mu}^{x} + M_{\theta}^{2})$$

$$S_{xy}^{adv} = S_{xy}^{c} - S_{xy}^{>} = S_{xy}^{<} - S_{xy}^{a} - advanced$$

$$\eta = \pm 1(bosons / fermions)$$

$$T^{a}(T^{c}) - (anti-)time - ordering operator$$

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym equations and separation into the real and imaginary parts one gets:

Generalized transport equations (GTE):

drift term Vlasov term backflow term collision term = ,loss' term - ,gain' term $\diamond \{ P^2 - M_0^2 - Re\Sigma_{XP}^{ret} \} \{ S_{XP}^{<} \} - \diamond \{ \Sigma_{XP}^{<} \} \{ ReS_{XP}^{ret} \} = \frac{i}{2} [\Sigma_{XP}^{>} S_{XP}^{<} - \Sigma_{XP}^{<} S_{XP}^{>}]$

Backflow term incorporates the off-shell behavior in the particle propagation ! vanishes in the quasiparticle limit $A_{XP} \rightarrow \delta(p^2 - M^2)$

GTE: Propagation of the Green's function $iS_{XP}=A_{XP}N_{XP}$, which carries information not only on the number of particles (N_{XP}) , but also on their properties, interactions and correlations (via A_{XP})

Spectral function: $A_{XP} = \frac{\Gamma_{XP}}{(P^2 - M_0^2 - Re\Sigma_{XP}^{ret})^2 + \Gamma_{XP}^2/4}$

 $\Gamma_{XP} = -Im \Sigma_{XP}^{ret} - \text{width of spectral function}$ = reaction rate of particle (at phase-space position XP) $\diamond \{F_1\}\{F_2\} := \frac{1}{2} \left(\frac{\partial F_1}{\partial X_{\mu}} \frac{\partial F_2}{\partial P^{\mu}} - \frac{\partial F_1}{\partial P_{\mu}} \frac{\partial F_2}{\partial X^{\mu}} \right)$

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445