

Upgrade of the ALICE Inner Tracking System

L. Musa - CERN

PH Detector Seminar CERN, 17 April, 2015

Upgrade of the ALICE Inner Tracking System

OUTLINE

- ALICE upgrade motivations and strategy
- ALICE current set-up and Inner Tracking System
- ITS upgrade design objectives
- ITS upgrade layout and main components
- Detector simulated performance: some examples

ALICE: study QGP properties

ALICE is designed to study the physics of strongly interacting matter at extreme conditions of energy density and temperature, and in particular the properties of the Quark Gluon Plasma (QGP), using A-A, p-A and pp collisions

Prior to LHC Heavy Ion programme, nature of QGP – "a nearly perfect liquid" – emerged from experiments at CERN SPS and BNL RHIC

ALICE confirms basic picture: observation of hot hadronic matter at unprecedented values of temperatures, densities and volumes

... and exceeding the precision and kinematic reach of all significant probes of the QGP measured in the past decades

Excellent capabilities to measure high-energy nuclear collisions at LHC

ALICE: study QGP properties

Progress on the characterization of QGP properties requires

- precision measurements of rare probes
- over a large kinematic range (from high to very low transverse momenta)
- and as function of multi-differential observables: centrality, reaction plane, ...

One example:

precision measurements of spectra, correlations and flow of heavy flavour hadrons and quarkonia at low transverse momenta (not possible to trigger!!)

This requires statistics (luminosity) and precision measurements

Target for upgrade programme (Run3 + Run4)

Pb-Pb recorded luminosity

 \geq 10 nb⁻¹ \Rightarrow 8 x 10¹⁰ events

I. Upgrade detectors, readout systems and online systems to

- read out all Pb-Pb interactions at a maximum rate of
 50kHz (i.e. L = 6x10²⁷ cm⁻²s⁻¹), with a minimum bias trigger (at present 500Hz)
- Gain a factor 100 in statistics over originally approved programme (Run1 + Run2)
- II. Significant improvement of vertexing and tracking capabilities at low p_T
- New Inner tracking System

It targets LHC 2nd Long Shutdown (2018/19)

The Current ALICE Detector

The Current ALICE Inner Tracking System

Current ITS

6 concentric barrels, 3 different technologies

- 2 layers of silicon pixel (SPD)
- 2 layers of silicon drift (SDD)
- 2 layers of silicon strips (SSD)

ITS – Secondary vertex determination

Example: D⁰ meson

Analysis based on decay topology and invariant mass technique

Open charm

Particle	Decay Channel	с τ (μm)	
D ⁰	K ⁻ π ⁺ (3.8%)	123	
D+	K⁻ π⁺ π⁺ (9.5%)	312	
D _s ⁺	K ⁺ K ⁻ π ⁺ (5.2%)	150	
Λ_{c}^{*}	p K⁻π⁺ (5.0%)	60	

How precisely is d₀ measured with the current ITS detector?

 μ m at p_T = 1 GeV/c

What determines the impact parameter resolution

Vertex projection from two points: a simplified approach (telescope equation)

ITS upgrade design objectives

- 1. Improve impact parameter resolution by a factor of ~3
- Get closer to IP (position of first layer): 39mm =>23mm
- Reduce x/X₀ /layer: ~1.14% \Rightarrow ~ 0.3% (for inner layers)
- Reduce pixel size: currently 50μm x 425μm 🜩 O(30μm x 30μm)
- 2. Improve tracking efficiency and $p_{\rm T}$ resolution at low $p_{\rm T}$
- Increase granularity:
 - 6 layers ➡ 7 layers
 - silicon drift and strips ➡ pixels
- 3. Fast readout

 readout Pb-Pb interactions at > 100 kHz and pp interactions at ~ several 10⁵ Hz (currently limited at 1kHz with full ITS)

- 4. Fast insertion/removal for yearly maintenance
- possibility to replace non functioning detector modules during yearly shutdown

Install detector during LHCC LS2 (2018-19)

J. Phys. G (41) 087002

New ITS Layout

7-layer barrel geometry based on MAPS

r coverage: 23 – 400 mm

η coverage: |η| ≤ 1.22for tracks from 90% most luminous region

- 3 Inner Barrel layers (IB)
- 4 Outer Barrel layers (OB)

Material /layer : $0.3\% X_0$ (IB), $1\% X_0$ (OB)

CMOS Pixel Sensor using TowerJazz 0.18 μ m CMOS Imaging Process

Tower Jazz 0.18 µm CMOS

- feature size 180 nm
- metal layers 6
- → Suited for high-density, low-power
- Gate oxide 3nm
- → Circuit rad-tolerant
- High-resistivity (> $1k\Omega$ cm) p-type epitaxial layer (20μ m 40μ m thick) on p-type substrate
- Small n-well diode (2-3 μm diameter), ~100 times smaller than pixel => low capacitance
- Application of (moderate) reverse bias voltage to substrate can be used to increase depletion zone around NWELL collection diode
- Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area
 13

ITS Pixel Chip – starting material

Charge collection time and recombination depend on doping concentration (Si resistivity) and radiation induced dislocations

SEM picture: epi thickness 20µm

Substrate: 2k Ohm cm, NWELL: @1V PW: @ 0V

Thicker epitaxial layers will yield more charge but ... diffusion increases cluster size

Measurements done at Desy test beam with 3.2 Gev/c positrons

- Cluster charge increases linearly with epi-layer thickness
- Cluster size increases with epi-layer thickness

optimum epi thickness (maximum seed signal) increases by increasing depletion volume

Low input capacitance decisive to achieve large S/N at low power

(W. Snoeys, NIMA 731 (2013) 125-130)

Diode $3\mu m$ x $3\mu m$ square n-well , White line: boundaries of depletion region

- Pixel input capacitance decreases with increasing reverse bias, in agreement with simulated size of depletion region
- Minor influence of epi resistivity for current pixel layout

Parameter	Inner Barrel	Outer Barrel		
Silicon thickness	50 μm			
Spatial resolution	5 μm	10 µm		
chip dimensions	15 mm x 30 mm			
Power density	< 300 mW/cm ²	< 100 mW/cm ²		
Event time resolution	< 30 µs			
Detection efficiency	> 99%			
Fake hit rate	< 10 ⁻⁵ per readout frame			
TID radiation hardness (*)	ation hardness ^(*) 2700 krad 100			
NIEL radiation hardness (*)	1.7x10 ¹³ 1MeV n _{eq} /cm ²	10 ¹² 1MeV n _{eq} / cm ²		

^(*) 10 x radiation load integrated over approved programme (~ 6 years of operation)

ITS Pixel Chip – two architectures

ALPIDE and MISTRAL-O have same dimensions (15mm x 30mm), identical physical and electrical interfaces: position of interface pads, electrical signaling, protocol

Power consumption^(*)

Dead area

 39mW/cm^2

1.1 mm x 30mm

^(*) might further reduce to 73mW/cm²

Power consumption

Dead area

 97mW/cm^2

1.7 mm x 30mm

ALPIDE Development

1.8mm

pALPIDE-1 – Main Design Features

ALICE

ALPIDE Full Scale prototype

- Dimensions: 30mm x 15 mm
- Pixel Matrix: 1024 cols x 512 rows
- Pixel pitch: 28μm x 28μm
- Peaking time (defines time res): <2μs
- Pulse length: 10-20µs
- In-pixel discriminator + 1 register
- Power consumption: < 40mW/cm²
- 4 sectors with different pixels

Figure: picture of pALPIDE-1

Sector	nwell diameter	spacing	pwell opening	reset
0	2 μm	1µm	4μm	PMOS
1	2μm	2μm	6µm	PMOS
2	2μm	2μm	6µm	Diode
3	2 μm	4μm	10µm	PMOS

Intensive test beam campaign

- PS: 5-7 Gev π⁻
- SPS: 120 Gev π⁻
- PAL (Korea): 60 MeV e⁻
- BTF (Frascati): 450 MeV e⁻
- DESY: 5.8 Gev e⁺

Scan of main parameters \rightarrow ~ 200 settings

7-plane telescope based on pALPIDE-1 chip

pALPIDE-1 – PS test beam (Sep 2014)

 $\lambda_{\text{fake}} < < 10^{-5}$ / event/pixel @ $\varepsilon_{\text{det}} > 99\%$

very large margin over design requirements

- Measurements at PS: $5 7 \text{ GeV } \pi^-$ December 2014
- Results refer to 50 μm thick chips: 3 non irradiated and 3 irradiated with neutrons at 10^{13} 1MeV n_{eq} / cm^2

pALPIDE-1 – PS test beam (Sep 2014)

Spatial resolution

Cluster size vs. position within pixel

 σ_{det} < 5 μ m is achieved with sufficient margin of operation

- Measurements at PS: $5 7 \text{ GeV } \pi^-$ September 2014
- Results refer to 50 μm thick chips: non irradiated and irradiated with neutrons 0.25 x 10^{13} and $~10^{13}$ 1MeV n_{eq} / cm^2

ALPIDE finalization

p-ALPIDE-2: 2nd full-scale prototype

- Optimization of some circuit blocks
- NO high-speed output link (1.2 Gbit/sec replaced by a 40Mb/s)
- Full Integration in IB and OB Module: main focus in 2015
- **Delivery:** April

p-ALPIDE-3: 3rd full-scale prototype

- Contains all final elements
- Submission: May '15 Delivery: July '15 -

p-ALPIDE-4: pre-series production

Submission Dec '15

MISTRAL FSBB-MO

FSBB Main Features

- About 1/3 of complete sensor (approx. 9mm x 17mm)
- Pixel Matrix: 416 Columns x 416 Rows
- Staggered Pixel: 22μm x 33μm (final chip 36μm x 64μm)
- In-pixel pre-amplification and clamping (6 metals)
- Double row-readout at 160MHz
- Integration time: 40μs (final chip 20μs)
- 2 versions (FSBB-M0 a & b): only results for M0-a will be shown

NB: the FSBB is not opimized in some respects (pixel dimensions, speed, power consumption, pads over matrix, ...)

Currently MISTRAL-O is being optimized for use in the outer layers:

- less need for spatial resolution: ~10μm
- more stringent power consumption limit: < 100mW/cm²

MISTRAL FSBB-M0 – SPS test beam (Oct 2014)

Beam conditions

- SPS H6A area, 120 Gev π^-
- Particle flux: trigger rate in the range 2.5 to 100 kHz / 5x10 mm²

Device and operational conditions

- 6 FSBB-M0a thinned to 50μm
- All measurements performed at T_{op} = 30 °C

- (*) Fake rate drops by O(10) masking 20 noisiest pixels.
 - Final chip includes masking feature

New ITS layout

New ITS Staves

New ITS Layout - Inner Barrel Stave

<Radius> (mm): 23,31,39
 Length in z (mm): 290
 Nr. of staves: 12, 16, 20
 Nr. of chips/stave: 9
 Nr. of chips/layer: 108, 144, 180
 Material thickness: ~ 0.3% X₀
 Power density: < 100 mW/cm²
 Throughput (@100kHz): < 80 Mb/s × cm⁻²

Inner Barrel – Geometry and material budget

Interconnection of pixel chip to flex PCB

Laser soldering: Interconnection of Pixel chip on flexible printed circuit

Interconnection of pixel chip to flex PCB

Laser Soldering

- Flux-less soldering of 200 µm diameter Sn/Ag(96.5/3.5) balls (227 °C melting T) in vacuum (≤10⁻¹ mbar)
- IR diode laser, 976 nm, 25 W, 50 mm focal length, 250 μm beam spot size
- Laser power modulated by pyrometer, programmable T profile ensures precise limitation of heating
- Soldering mask (in Macor® or Rubalit ®) used to press FPC on chip and guide soldering balls inside FPC vias
- Solder provides electrical and mechanical connection → no glue

Solder Pads

- In order to solder the chip on the flexible printed circuit (FPC), the chip Al pads need to be covered with Ni-Au (wet-able surface)
- Plating is done on wafers level using electroless Ni-Au plating, prior to thinning and dicing Ni/Au plated pads

Contact pads are distributed over the matrix (custom designed)

Inner Barrel – full-scale prototype

ITS Outer Barrel

Outer Barrel (OB)

<radius> (mm): 194, 247, 353, 405

Nr. staves: 24, 30, 42, 48

Nr. Chips/layer: 6048 (ML), 17740(OL)

Power density < 100 mW / cm²

Length (mm): 900 (ML), 1500 (OL) Nr. modules/stave: 4 (ML), 7 (OL) Material thickness: ~ $1\% X_0$ Throughput (@100kHz): < $3Mb/s \times cm^{-2}$

ITS Outer Detector Barrel

Performance of new ITS (MC simulations)

Impact parameter resolution

Tracking efficiency (ITS standalone)

 \sim 40 µm at p_T = 500 MeV/c

$D^0 \rightarrow K^-\pi^+$ secondary vertex position resolution

J. Phys. G (41) 087002

Project Timeline and Collaboration

ALICE ITS Collaboration

<u>CERN</u>, China (Wuhan), Check Republic (Prague), France (Grenoble, <u>Strasbourg</u>), Italy (<u>Aless.</u>, <u>Bari</u>, Cagliari, <u>Catania</u>, Frascati, <u>Padova</u>, <u>Roma</u>, <u>Trieste</u>, <u>Torino</u>), Indonesia (LIPI), Korea (Pusan, Inha, Yonsei), Netherlands (<u>Nikhef</u>, <u>Utrecht</u>), Pakistan (CIIT-Islamabad), <u>Russia (St. Petersburg</u>), <u>Slovakia (Kosice</u>), Thailand (Suranaree, SLRI, TMEC), UK (Daresbury, Liverpool, RAL), Ukraine (<u>Kharkov</u>), USA (Austin, Berkeley) SPARES

Readout – Inner and Middle/Outer Layers connections

Inner layers stave, 9 independent sensors (each read/drives its own data lines)

Mid/Outer layers module: 2 symmetric group of 1 master and 6 slave chips. Only the master accesses the data/control lines toward/from the outer world.

Readout – copper links and available bandwidth

MODID = 001	MODID = 010	MODID = 011	MODID = 100	MODID = 101	MODID = 110	MODID = 111
				·······		······································
MODID = 001	MODID = 010	MODID = 011	MODID = 100	MODID = 101	MODID = 110	MODID = 111

Readout – copper links and available bandwidth

Readout – general scheme and data throughput

Impact parameter studies (ALICE ITS Upgrade)

- Current ALICE ITS
 - ♦ radial position of first layer: 39mm
 - \Rightarrow x/X₀: 1.14% per layer
 - \diamond spatial resolution (r-phi): 12 μm
- A) current ITS + L0: x/X0 = 0.3%, res.=4µm;
- B) current ITS + L0: r = 22mm, x/X₀ = 0.3%;
- C) current ITS + L0: r = 22mm, x/X₀ = 0.3%;

ALICE ITS Upgrade CDR, CERN-LHCC-2012-12

Matching efficiency between the tracks reconstructed in the upgraded ITS and TPC for different values of event pile-up

The average event pile-up depends on the interaction rate and detector integration time

interaction rate 50 kHz integration time: $4 - 30 \ \mu s$

For 30 μs integration time (worst case design):

<pile-up> = 1 central + 1.5 min. bias

MOMENTUM RESOLUTION

J. Phys. G (41) 087002

Transverse momentum resolution as function of p_T for primary charged pions for the upgraded ITS and current ITS. The results are shown for ITS standalone and ITS-TPC combined tracking.

How integration time and pile-up affect performance

ALICE ITS Upgrade

At 50 kHz Pb-Pb interaction rate <pile-up> @ 20 μ s integration time: 1 central + 1 minimum bias

At 200 kHz pp interaction rate <pile-up> @ 20 µs integration time: 5 interaction

Flexible Printed Circuit

- <u>2 layouts:</u>
 - IB: 1x9 chips, Al
 - OB: 2x7 chips, Cu
- Metallised vias of 220
 mm diameter
- Two openings of 1x1 and 1x0.4 mm², respectively, to "see" chip targets

15/12/2014

HIC assembly - aligned pad chips

The soldering mask and ball transfer tool

15/12/2014

Installation

Trs Inner Barrel MFT Barrel Independent insertion of the ITS Inner and Outer half barrels along the beampipe

Mechanical Integration

Mechanical Integration

Mechanical Integration

