

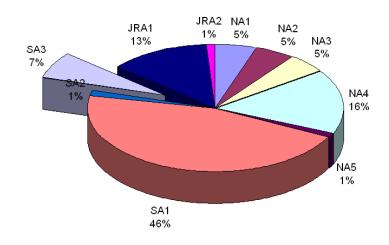
Enabling Grids for E-sciencE

SA3 Report

Markus Schulz
For EGEE-II SA3
IT Department, CERN
2nd EU Review of EGEE-II

www.eu-egee.org www.glite.org

- Activity Goals
- Main Achievements
- Status
 - Integration and Release Management
 - Testing
 - Multiplatform Support
 - Interoperability
- Issues for SA3
- Future Plans
- Summary


SA3 in Numbers

Enabling Grids for E-sciencE

SA3 Partners

EGEE-II Budget

Manpower: 12 partners, 9 countries, 30 FTE

Short Name	Country	Total (PMs)
CERN	Switzerland	432
PSNC	Poland	36
TCD	Ireland	19
IMPERIAL	UK	24
INFN	Italy	60
UKBH	Denmark	12
UCY	Cyprus	34
GRNET	Greece	24
CSIC	Spain	12
PIC	Spain	24
CESGA	Spain	12
FZJ	Germany	36
Total		725

Activity Goals

- Manage the process of building middleware distributions
 - Integrating middleware components from a variety of sources
 - Based on TCG decisions
 - Define acceptance criteria for accepting components
 - Ensure:
 - reliability, robustness, scalability, security and usability
 - Decouple middleware distributions from middleware development

- Integration and Packaging
- Testing and Certification
 - Functional and Stress Testing
 - Security, Vulnerability Testing
 - Operate Certification and Testing Test Beds
 - Project Testing Coordination
- Debugging, Analysis, Support
- Interoperation
- Support for porting
- Participate in standardization efforts
- Capture requirements

- gLite-3.0: Integrated release of LCG-2.7 and gLite-1.5
 - Different
 - build systems, configuration management, overlapping functionality
 - Different process......
 - LCG-2 tailored to production, gLite process tailored to development
- Released on May 4th 2006
 - 4 days later than planned 5 months before
- gLite-3.1: Based on VDT-1.6, Scientific Linux 4, ETICS
 - Using the new process components have been released incrementally
 - New major versions for major components
 - WMS, LB and CE
 - All clients and several services released for 64bit
 - Component based, modular configuration tool (YAIM 4)

Achievements: Process

Enabling Grids for E-science

- Introduced new software lifecycle process
 - Based on the gLite process and LCG-2 experience
 - Documented in MSA3.2 and in use since July 2006
 - Components are updated independently
 - Updates are delivered on a weekly basis to the PPS
 - Move after 2 weeks to production
 - Clear link between component versions, Patches and Bugs
 - Semi-automatic release note production
 - Clear prioritization by stakeholders
 - TCG for medium term (3-6 months) and EMT for short term goals
 - Clear definition of roles and responsibilities
- Required only minor modifications in the second year
 - One state has been added
 - Several process monitoring tools have been developed

Achievements: Testing

Test strategy, process,framework and external testbeds

- SAM framework for automated testing (SA1 product)
- Central repository for tests
- Formal follow-up on test development
- Increased number of test cases
 - Development of tests mostly by partners
- Formal process for Patch certification
- Extended test beds: 8 sites
 - about 100 nodes to cover additional deployment scenarios
- Extensive use of virtualized test beds
 - Main mode of testing, significantly improved efficiency
- Use of "Experimental Services"
 - Massive scalability tests can't be conducted on test infrastructures
- Dedicated scalability testbeds for CEs

Achievements: Interoperability

Enabling Grids for E-science

- For details see dedicated presentation
- Proof of concept demonstrated for: NAREGI
- Demonstrated interoperability with: UNICORE and ARC
- First steps towards interoperation with: ARC
 - Pilot VO
 - Accounting, monitoring, support
- Continuous production use with: OSG
 - Added a interoperability testbed within the PPS

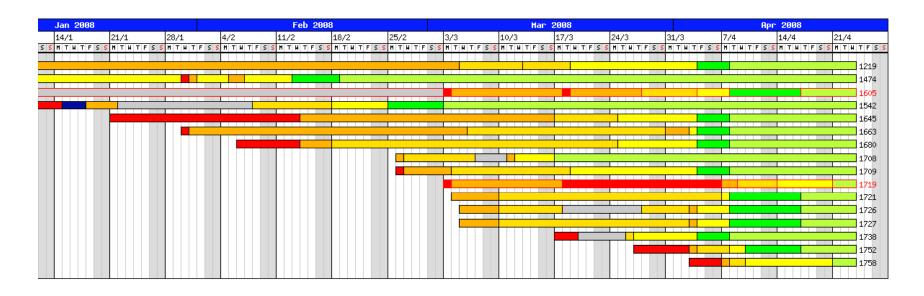
Achievements: Multiplatform Support

- Based on ETICS for multi platform build support
- gLite clients for more platforms are now available with a short delay after new releases appear
 - Still covering mainly different Linux distributions

Integration and Release Management

Handling Bugs and Patches (simplified)

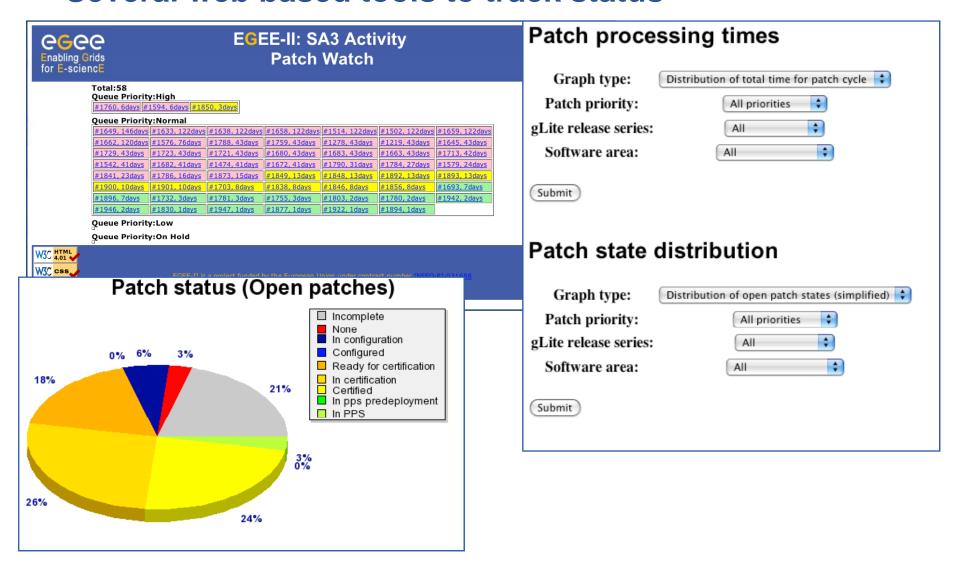
Enabling Grids for E-sciencE Prioritization: EMT Continuous, several **EMT** twice a week **Bugs and Patches** TCG every second week progress in parallel S Software Providers **Experimental Services SA3** Integration Use production service JRA1, VDT,.... S **SA3** Configuration **Users** Stress tests **SA3 Test Process** SA3 **Rejected Patches** Release Manager Installation tests Coordinates **Functional Tests** Patch Specific Tests **Every second week** Patches are moved Scalability Tests **Once a week Patches** to Production Tests on external testbeds that pass certification move to PPS SA1 PPS **SA1 Production Service** Users Test & Reject **Updates and Operates Updates and Operates**


Process is in active use since July 2006

- Produced 26 sets of updates to the system in the first year
- Second year:
 - Produced 23 sets of updates to gLite-3.0
 - Produced 17 sets of updates to gLite-3.1
- Processed a total of 565 Patches
 - 361 for gLite-3.0, 204 for gLite-3.1
 - First year: 269 Patches
 - Addressing 835 Bugs
- During EGEE-II 3099 bugs have been opened
 - 14% related to enhancements
 - 86% related to defects
 - Closed bugs: 1464 EGEE-II and 1002 EGEE-I

Process Monitors

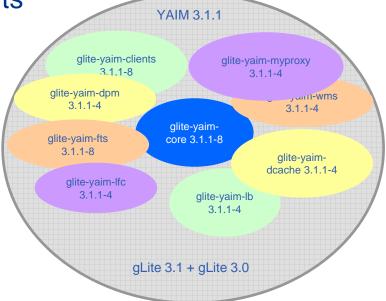
Several web based tools to track status



Process Monitors

Several web based tools to track status

- Processing patches moved progressively to partners
 - Required improved tools for progress tracking
 - Partners tend to work on complex Patches that require some time
 - Approximately 10% of the patches have been handled outside CERN
 - Corresponds to about 20% of the certification effort
- To improve efficiency we developed tools that can directly access to DB of the tracking tool (Savannah)


Configuration Management

Enabling Grids for E-sciencE

- gLite-1 configuration: XML and Python
- LCG-2 configuration: Key-Value pairs + bash (YAIM)
- Site administrators preferred YAIM (result of survey)
- Moved all components to YAIM
 - Initially monolithic architecture

Every configuration change required an update to all

components

Configuration Management

Enabling Grids for E-science

YAIM 4

- Component based to ease independent frequent releases
- Allowed to distribute configuration effort
 - 25 contributors
 - Coordinated at CERN (quality control, testing)
- Released October 2007
- 33 modules released, 4 under development

Installation tool

- Started with APT for (semi) automatic RPM updates
 - Standard Debian tool, widely used
- With SL4 we moved to YUM (comes with the release)
- RPM lists for other tools
- Tarballs for UIs and WNs

Build Systems

Started with 3 systems

- LCG, gLite, ETICS
- Complicates dependency management, release management

ETICS

- Used for the gLite-3.1 branch
- Migration process to ETICS started in early August 06
 - Finished for almost all components September 2007
 - Last component moved February 2007
- Overall experience has been positive
 - Initial release lacked maturity
 - Functionality and performance has improved significantly over time
 - Multiplatform build support was very helpful

- Test plans and process documented in MSA3.5
- Test strategy
 - Multi level tests (from simple functional tests, to stress tests)
 - To abort as early as possible
 - As much steps in parallel as possible
 - Component based
 - Install, configure, functional tests, first patch certification
 - Requires many temporary testbeds
 - We use virtualization (Xen based) to save time and resources
 - We use the locally developed Vnode management system
 - First local then external testbeds
 - Testing relies now on a "Baseline Release" testbed
 - Required significant reorganization of the testbed operation

Testing Framework

Enabling Grids for E-sciencE

- We have chosen SAM as our framework for testing
 - Maintained and used by SA1, sharing tests
 - Provides Web based, customizable views and history

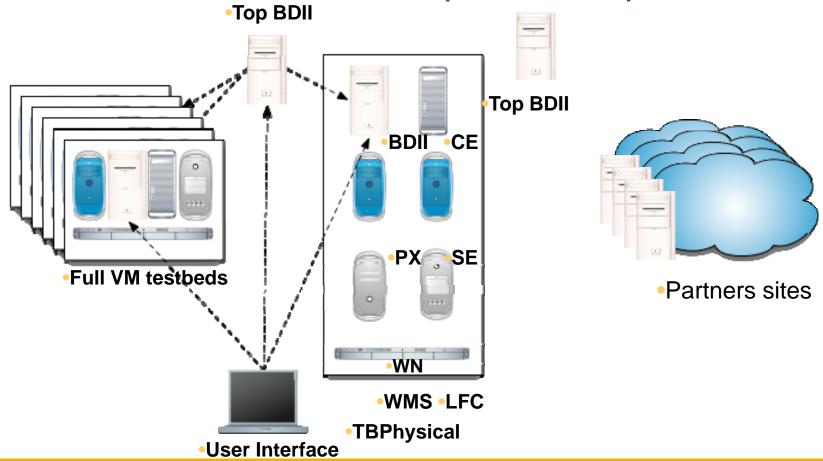
Contact: EasySAM Working Group :-) e-mail: Gergely.Debreczeni@cern.ch Portal last modified: 2008, feb, 4

2006-2008 EasySam (c)

Enabling Grids for E-scient

Test Status

- Test development mainly by partners
 - Progress is monitored and documented every 2 weeks
- Many tests from external sources
 - Volunteers, other projects
- Security testing
 - Done by Posznan
 - Code reviews (VOMS, R-GMA, DPM), penetration tests
 - Independent testbed
 - Report to the grid vulnerability group
- Interoperability tests
 - For OSG within the scope of the PPS


Test Status

- Number of test cases available now >250
 - During the second year we almost doubled the number of tests
- Most progress has been achieved for the following components:
 - Client tests
 - Many options
 - Data management tests
 - SRM
 - DPM
 - LFC
 - FTS
 - Stress tests for:
 - WMS/LB
 - CE
- Suitable tests for regression tests have been identified
 - Integration into the ETICS framework started

Test Beds

- Virtual testbeds for individual testers (> 10)
- Dynamical allocated test nodes (> 50 nodes)
- Central certification testbed (> 50 nodes)

External testbeds linked to the certification testbed

- CESGA (SGE)
- PIC (Condor)
- GRNET (Torque)
- UCY (Torque)
- INFN (LSF)
- LAL (DPM,LFC)
- DESY (dcache)

Usage pattern has changed over time.

Partners carry out more independent Patch certification on their sites

Standalone testbeds

- Posznan (Security)
- IMPERIAL (WMS)
- TCD (Porting)

Interoperability

See dedicated presentation

Standardization

Covered in the interoperability presentation

Main partners are TCD and Posznan

- Problems with porting
 - Software dependencies and interdependencies
 - Execution of the "Plan for glite restructuring" improved the situation
 - ETICS support for multiplatform build made the process more efficient
 - Up to now mainly "post release" porting
 - Difficult to follow change rate
- TCD is moving to ETICS to close the gap
 - Supports better concurrent multi platform build and tests
 - https://twiki.cern.ch/twiki/bin/view/EGEE/PortingWithEtics

http://cagraidsvr06.cs.tcd.ie/autobuild Status table at

Builds using ETICS version: 1.3.6-1

Worker Node Build Status													
ARCH	OS TYPE	VERSION	DISTRO	torque	VDT	deps	GridIre	Basic	RGMA	VOMS	DM	gfal	WN-dev
	CentOS	4	yum	3/3	0/1	30/30	2/2	12/12	41/41	13/13	17/17	21/23	107/109
	CentOS	5	yum	3/3	4/4	30/30	2/2	12/12	41/41	14/14	17/17	20/20	106/109
ia32	Debian	4	debs	3/3	1/1	29/30	1/1	12/12	41/41	14/14	16/17	16/20	95/107
	Solaris	10	pkg/tarball	3/3	1/1	23/23	2/2	12/12	33/41	0/11	7/17	7/20	N/A
	SuSE	10	apt	3/3	4/4	30/30	1/1	12/12	41/41	13/13	17/17	18/20	N/A
	CentOS	4	yum	3/3	1/1	26/26	2/2	9/9	41/41	15/15	18/18	21/21	90/108
x86_64	CentOS	5	yum	3/3	4/4	24/30	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	SuSE	10	apt	3/3	4/4	1/30	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Mac OS X	10.4	fink/tarball	3/3	1/1	1/30	1/1	12/12	33/41	0/11	0/17	11/29	57/109
powerpc	AIX	5	rpm/tarball	3/3	1/1	22/30	1/1	10/11	0/6	0/4	7/17	7/20	N/A
	Yellow Dog	6	yum	3/3	0/3	0/27	N/A	N/A	N/A	N/A	N/A	N/A	N/A

PSNC Build Results

Worker Node Build Status											
ARCH OS TY	PE VERSI	ON DISTRO	torque	VDT	deps	Basic	RGMA	VOMS	DM	gfal	WN-dev
x86_64 Debian	n 4	debs	3/3	1/1	22/22	12/12	41/41	14/14	16/17	18/21	75/107

Obselete OS Build Results

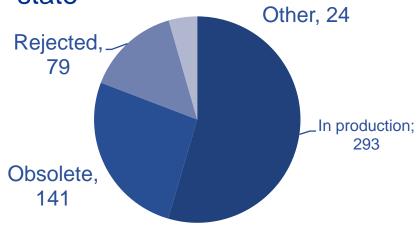
Worker Node Build Status												
ARCH	OS TYPE	VERSION	DISTRO	torque	VDT	deps	GridIre	Basic	RGMA	VOMS	DM	WN-dev
ia32	SuSE	9	apt	3/3	3/3	28/28	2/2	12/12	41/41	14/14	17/17	107/107
x86_64	SLES	9	apt	3/3	1/1	24/24	1/1	9/9	37/41	10/15	12/18	74/109
powerpc	Mac OS X	10.3	fink/tarball	3/3	1/1	23/23	1/1	12/12	32/41	0/11	0/17	60/109

Lagand	Colour						
Legend	Meaning	To be Started	Started	DONE	Not Applicable		

Batch System Support

- SA3 supports now:
- Torque/PBS -> reference platform
 - LCG-CE, CREAM-CE
- SGE
 - LCG-CE, gLite-CE
- Condor
 - LCG-CE
- LSF
 - No direct support by a defined partner
 - LCG-CE, CREAM

Maintenance

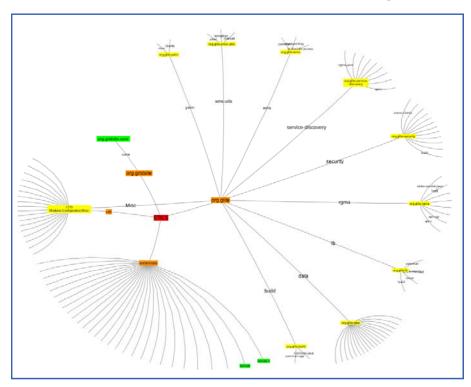

- SA3 ported LCG-CE to SL4
 - Stop gap solution until CREAM-replaces the LCG-CE
- SA3 improved the performance of the LCG-CE
 - To cope with increased usage of the infrastructure
 - Speedup > 5 time

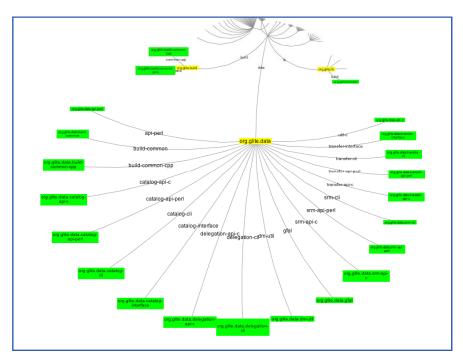
Issues: 2nd Year

Change management

- Move to SL4, VDT-1.6, globus-4
- Move to ETICS
- Many transitions in the infrastructure
- While keeping changes flowing to production
- Patch tracking reveals that SA3 can't handle the change rate
 - Many Patches end in "Obsolete" state
 - We coped better than last year
 - Improved tools
 - Automation
 - Highly trained staff
 - Increased Patch latency

Testing


- Depends still too much on central team
- For complex services tester require significant training
 - Specialization -→ can result in patches being queued
- We work towards more complete automation
 - Automation comes at a cost
 - Automation can't replace in depth understanding of the service


Multiplatform support

Still suffers from complex dependencies

•gLite

Data management

Automate more aspects of the process

- Testing
 - Regression tests, deployment tests
- Patch handling
 - Ease the workload of the developers and integrators
 - Tools for patch handling

Distributed Patch processing

- Use experience of partners to increase throughput
- Improve the process
 - Patch iterations
 - Transition from certification to PPS to production
 - Goal: Reduced Patch latency

Alternative distribution of clients

– "push" multiple versions for user preview

- Support at least 2 additional platforms for all releases
 - To be defined by TCG (now TMB)
 - Can be restricted to some components (UIs, WN)

- SA3 worked well as an activity
- We have a working Software Life Cycle process
 - Component based updates work!
 - Very flexible, modular configuration tool, YAIM-4
- Test process defined and implemented
 - Many additional tests
 - Common framework with SA1 (SAM)
 - External testbeds to cover deployment scenarios
 - Virtualized testbeds improved efficiency
- Move to gLite-3.1 has been completed
 - Uniform build system (ETICS)
- Multiplatform support is now well understood
 - Significant progress during the last year

Summary

- Interoperability
 - OSG is in production
 - ARC close to production
 - UNICORE demonstrated basic functionality
 - NAREGI demonstrated core functionality
 - Job level and data