J. Rosner – Heavy-Quark Baryon Workshop – July 24, 2014 PR D **90**, 014023 (2014) [arXiv:1405.2885]

Thanks to Samim Erhan, Jonathan Lewis, Patrick Koppenburg, Patrick Lukens, Brian Meadows, and Sheldon Stone for helpful advice

Motivated by A_{FB} in $p\bar{p} \to t\bar{t}$ being possibly larger than in SM

In CMS data at LHC, $\sigma(pp\to\bar{\Lambda}_bX)/\sigma(pp\to\Lambda_bX)$ appears to fall as baryons become more forward

Exploring a couple of mechanisms which could give this effect

ATLAS, LHCb, and Tevatron detectors: search for similar effect

At Tevatron, Λ_b would tend to follow proton and $\bar{\Lambda}_b$ would tend to follow antiproton. Eliminates particle vs. antiparticle bias.

At ISR, Λ_c production favored over that of $\bar{\Lambda}_c$: Nonperturbative!

ASYMMETRIES?

At $\sqrt{s}=7$ TeV LHCb finds $A_P \equiv [\sigma(D_s^+) - \sigma(D_s^-)]/[\sigma(D_s^+) + \sigma(D_s^-)] = (-0.33 \pm 0.22 \pm 0.10)\%$ for $2.0 \le y \le 4.5$: No leading-quark effect.

 \Leftarrow CMS at LHC (1.96 fb⁻¹ at $\sqrt{s}=7$ TeV: Not claiming significant variation with $|y(\Lambda_b)|$ but most-forward bin is about 2/3

Is this behavior observed at higher $|y(\Lambda_b)|$?

PRODUCTION MECHANISMS

Mechanisms without asymmetry

q ar q o b ar b and g g o b ar b have no asymmetry in lowest order

Expected to dominate at small y and large p_T

Some additional contribution needed for Λ_b production at small p_T

Quasi-diffractive excitation

Would favor Λ_b production by protons and $\bar{\Lambda}_b$ production by antiprotons

Some features in common with intrinsic heavy quark picture

Heavy forward baryon more likely to contain a b than a \bar{b}

String-drag model: JLR, PR D 86, 014011 (2012)

QCD string breaks at length of 1.5 fm [PL B 396, 293 (1996)]

Interaction of final heavy quarks with spectators (for initial $p\bar{p}$):

Dashed lines denote QCD strings acting for a time

$$t = \frac{1.5 \times 10^{-15} \text{ m}}{3 \times 10^8 \text{ (m/s)}}$$
$$= 5 \times 10^{-24} \text{ s}$$

With string tension

 $\Pr[qq] \ (3^*) \ k = 0.18 \ \text{GeV}^2 \ \text{momentum}$ imparted to $b \ (\bar{b})$ is

$$\Delta p_z = kt = \frac{(0.18 \text{ GeV}^2)(5 \times 10^{-24} \text{ s})}{6.582 \times 10^{-25} \text{ GeV} \cdot \text{s}} \simeq 1.4 \text{ GeV}$$

pulling b quark in direction of proton

EFFECT OF STRING DRAG

As $\langle p_T \rangle$ of Λ_b is about 5 GeV in CMS this is non-negligible "Tsallis" distribution [J. Stat. Phys. **52**, 479 (1988)]:

Let
$$\theta$$
 be b polar angle; $y=-\ln\tan(\theta/2)$; $dy/d\theta=-\cosh y$ = -1 at $y=0$

$$\Delta\theta \simeq -\Delta p_z/p_T$$

Hence at
$$y=0$$

$$\Delta y = -\Delta \theta \simeq 1.4~{\rm GeV}/p_T$$

Independent of y

About $3 \times \text{hep-ph}/0002056$

CONCLUSIONS

Monte Carlo programs should include interactions of finalstate heavy quarks with remnant ("spectator") systems

Apparently some programs do this, e.g., P. Skands $et\ al.$, J. High Energy Phys. 07 (2012) 151 [arXiv:1205.1466 [hep-ph]]

String drag unimportant for top production but worth considering for \boldsymbol{b}

 Λ_b production asymmetry is an interesting measurement!

As a CDF member I hope to analyze it in our data.