Fifty Years of Programming
Twenty Years of STL

P.J. Plauger

Dinkumware, Ltd.



My Careers

e Physicist [1961-1969]

* Programmer [1963-present]

e Technical writer [1971-present]

e Science fiction writer [1973-present]

But mostly I’'m a programmer.



One Programmer’s Progress

[1961-1965] Princeton undergratuate

[1965-1969] Michigan State University graduate
student

[1969-1975] Bell Laboratories member of
technical staff

1975-1978] Yourdon Inc Vice President
1978-1988] Whitesmiths, Ltd. President
1988-1995] Independent writer
1995-present] Dinkumware, Ltd. President




The Physicist as Programmer

e Rule 1: Don’t.
e Rule 2: Get someone else to do it.
* Rule 3: Get the tricky bits from a library.

 Rule 4: If you must do it, make it reusable.

You don’t have to be a professional programmer
to need to program professionally.



A Program Product

A program product consists of:

The code itself, written to be readable and
maintainable

Documentation, for various audiences

Tests, to demonstrate correctness and to catch
maintenance errors

Scripts, to automate the production of all of the
above

Remember, grep is your friend.



Progress in Programming Languages

e Fortran 2, assembler (spaghetti code)

e C(code and data structures, low level access)
e sh (scripting)

e C++ (classes)

e C++98 (exceptions, templates, STL)

e C++11 (template metaprogramming, threads)
e C++14 (more stuff)

Programmers typically program at one to two levels
behind the latest language.



Standard Template Library

e Operates on sequences of elements

 Walks sequences with five kinds of iterators:
output, input, forward, bidirectional, and
random access

* Includes containers that manage sequences
with various speed/complexity tradeoffs

* Includes gazillions of algorithms for
manipulating sequences

Result: STL is a major advance in reusability.




Template Metaprogramming

e STL originally used limited TM, mostly for
dispatching on iterator type (iterator tags).

e TM lets you dispatch on practically any compile
time expression (enable_if), at considerable cost
in complexity and readability.

e Concepts will let you constrain templates up
front, with many fewer unreadable tricks, but
they didn’t make the cut for C++11/14.

TM is currently hard to learn, but improving rapidly.



Floating Point Arithmetic

FP is supposed to aid the innocent, but:
* Finite precision can lead to significance loss.
e Finite range can lead to overflow/underflow.

 Representable values are unevenly
distributed.

e Sensitivity can make some functions not
worth computing over certain ranges.

FP code is often not as reusable as it appears.



Special Math

A spinoff of C++11 is an IS called Special Math.

* Includes ellipticals, Bessels, Laguerres, etc. in
all three FP precisions

* Proved very hard to write for full range and
with (known) good precision, but Dinkumware
did it

e Can improve code reuse considerably

See ISO/IEC 29124:2010.



Rules for Numerical Programming

e |[f you’re near a singularity mathematically,
you’re at it on the computer.

e |f you subtract two FP numbers that are nearly
equal, you will lose (maybe lots of) precision.

e An iterative algorithm that must converge
theoretically might not do so numerically.

Always write a modest number of tests over the
ranges of interest, and rerun them after any
code changes.



Computational Complexity

e |f you know complexity matters, first see if STL
nas the tradeoff you need.

 Don’t worry about theoretical complexity if
the code is plenty fast enough.

e Computers get ever faster, but exponential
complexity gets you sooner or later.



Testing

* If you can’t test it, what’s the spec?
e If you don’t test it, how do you know it’s right?

* If you don’t retest it, how do you know it’s still
right?

Remember, however, that testing reveals only
the presence of a bug; it can’t promise the
complete absence of bugs.



Test Suites

Writing tests is an art that few programmers
master well.

Test for the common cases, the corner cases,
and some places in between.

Don’t test so much that it takes too much
time.

Automate testing so that failures are obvious
and easily traced to their cause.



Documentation

Documentation comes in three major flavors:

e Tutorial documentation gives overviews,
sample uses.

e Mastery documentation teaches how to use
the principal features.

e Reference documentation describes all visible
features.

Jones’s Second Law — If it’s not written down, it
doesn’t exist.



Rules for Technical Writers

e Use declarative sentences, in the active voice
(KISS).

* Avoid jokes, slang, and fancy phrases.

* Omit needless words.

e Say the same thing the same way every time.
 Document it before you forget it.

You’re probably a better writer than you think
you are.



Kernighan’s Laws for Programmers

* Write the simplest prototype you can.
e Let your customers tell you what to add.

e Put off the complex bits as long as you can
(possibly forever).

 Program for readers, not the computer.
 Don’t be too clever.



Brooks’s Laws for Programmers

Learn from the failures of others.

A program product is three times as hard to
write as a one-off program just for you.

A system product is three times as hard to
write as a program product.

A project just a little bit bigger than you’ve
ever done before may well be a lot bigger than
you can imagine.



Heinlein’s Laws for Writers

Keep writing until it’s finished.
When it’s finished, stop writing.
Keep it on the market until it’s sold.
When it’s sold, stop marketing.



Combined Laws for Programmers

e Get early feedback.

* Write a simple prototype.

* Rinse and repeat, stop when done.
e Test it!

e Document it!

e Market it!

If it’s any good, in five years you too will be a
customer.



