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Last lecture

Quantum SHO and PT

x ∼ a + a†

We prefer to work with EV of H0

The form of the perturbation tells us what state can be
created and annihilated

a and a† are important for PT of the SHO

Today: Feynman diagrams and formal symmetries
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PT for 2 SHOs again

V (x, y) =
kx2

2
+

4ky2

2
+ αx2y i = |0, 1〉 x ∼ ax + a†

x

Since V ′ ∼ x2y we see that ∆ny = ±1 and ∆nx = 0, ±2

f = |2, 0〉 f = |2, 2〉 f = |0, 0〉 f = |0, 2〉

Energy cons. for the final state (not for int. states)

Since ωy = 2ωx only f = |2, 0〉 is allowed

A ∼ 〈2, 0|αx2y|0, 1〉 ∼ α〈2, 0|(ax+a†
x)(ax+a†

x)(ay+a†
y)|0, 1〉

Decay y → 2x with lifetime of τy ∝ α2
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Even More PT

V ′ = αx2z + βxyz ωz = 10, ωy = 3, ωx = 1

Calculate y → 3x using 2nd order PT

A ∼ 〈3, 0, 0|O|0, 1, 0〉 O ∼
∑ 〈3, 0, 0|V ′|n〉〈n|V ′|0, 1, 0〉

En − E0,1,0

Which intermediate states? |1, 0, 1〉 and |2, 1, 1〉

A1 = |0, 1, 0〉
β
−→ |1, 0, 1〉

α
−→ |3, 0, 0〉

A2 = |0, 1, 0〉
α
−→ |2, 1, 1〉

β
−→ |3, 0, 0〉

The total amplitude is then

A ∝ αβ

(

#

∆E1
+

#

∆E2

)

∝ αβ

(

#

8
+

#

12

)

Y. Grossman The SM (3) CERN, July 7, 2014 p. 4



Closer look

V ′ = αx2z + βxyz ωz = 10, ωy = 3, ωx = 1

We look at A = |0, 1, 0〉
β
−→ |1, 0, 1〉

α
−→ |3, 0, 0〉

y

β

x

α

x

x
z A ∝

αβ

∆Ez
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Feynman diagrams
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Using PT for fields

For SHOs we have xi ∼ ai + a†
i

For fields we then have

φ ∼
∫

[

a(k) + a†(k)
]

dk

Quantum field = creation and annihilation operators
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Feynman diagrams

A graphical way to do perturbation theory with fields

Unlike SHOs before, a particle can have any energy as
long as E ≥ m

Operators with 3 or more fields generate transitions
between states. They give decays and scatterings

Decay rates and scattering cross sections are
calculated using the Golden Rule

Amplitude are calculated from L

We generate graphs where lines are particles and
vertices are interactions
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Examples of vertices

λL = λφ2
1φ2 :

λL = λφ4 :
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Calculations

We usually care about 1 → n or 2 → n processes

We need to make sure we have energy conservation

External (Internal) particles are called on(off)–shell

The amplitude is the product of all the vertices and
internal lines

Each internal line gives 1/(∆E)2 suppression

There are many more rules to get all the factors right

From the amplitude we get the rate
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Examples of amplitudes

L = λ1XY Z + λ2X2Z Γ(Z → XY )

Energy conservation condition

Draw the diagram and estimate the amplitude
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Examples of amplitudes

L = λ1XY Z + λ2X2Z Γ(Z → XY )

Energy conservation condition mZ > mX + mY

Draw the diagram and estimate the amplitude

Z

λ1

X

Y

A ∝ λ1
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Examples of amplitudes (2)

L = λ1XY Z + λ2X2Z Γ(Y → 3X)

Energy conservation condition

Draw the diagram and estimate the amplitude
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Examples of amplitudes (2)

L = λ1XY Z + λ2X2Z Γ(Y → 3X)

Energy conservation condition mY > 3mX

Draw the diagram and estimate the amplitude

Y

λ1

X

λ2

X

X
Z A ∝ λ1λ2 ×

1

(∆EZ)2
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Examples of amplitudes (HW)

L = λ1XY Z + λ2X2Z σ(XX → XY )

Energy conservation condition

Draw the diagram and estimate the amplitude
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Some summary

Quadratic terms describe free fields. Free particles
cannot be created nor decay

We use perturbation theory were terms with 3 or more
fields in L are consider small

These terms can generate and destroy particles and
give dynamics

Feynman diagrams are a tool to calculate transition
amplitudes

Many more details are needed to get calculation done

Once calculations and experiments to check them are
done, we can test our theory
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Symmetries

Y. Grossman The SM (3) CERN, July 7, 2014 p. 15



How to “built” Lagrangians

L is:

The most general one that is invariant under some
symmetries

We work up to some order (usually 4)

We need the following input:

What are the symmtires we impose

What DOFs we have and how they transform under
the symmtry

The output is

A Lagrangian with N parameters

We need to measure its parameters and test it
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Symmetries and representations

Example: 3d real space in classical mechanics

We require that L is invariant under rotation

All our DOFs are assigned into vector representations
(~r1, ~r2, ...)

We construct invariants from these DOFs. They are
called singlets or scalars

Cij ≡ ~ri · ~rj

We then require that V is a function of the Cijs
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Generalizations

In mechanics, ~r lives in 3d real space and is a vector

Fields do not live in real space. They live in some
mathematical space

They also do not have to be vectors, but can be scalars
or tensors (representation)

The idea is similar to what we did in mechanics

We require L to be invariant under rotation in that
mathematical space

Thus L depends only on combinations of fields that
form singlets

All this is related to a subject called Lie groups

We usually care about SO(N), SU(N) and U(1)
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Combining representations

It is all about generating singlets

We all know that we can combine vectors in real space
to generate singlets

Some of you know how to make a spin zero from 2
spin half spinors (spin zero is a singlet!)

There is a generalization of this procedure to any
mathematical space

As of now, all we need to know are SU(3), SU(2) and
U(1)
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U(1)

U(1) is rotation in 1d complex space, or 2d real space

Complex numbers live in that space (or in our case,
complex fields)

When we rotate the space, each number can transform
differently

When we rotate by an angle θ we have

φ → eiqθφ φ1φ2 → ei(q1+q2)θφ1φ2

Now we know how to build invariants:
∑

qi = 0

Charge conservation = symmetry under rotation in a
mathematical U(1) space

So far we did not call it electric charge, just charge
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SU(2)

U(2) is rotation in 2d complex space. We have
U(2) = SU(2) × U(1)

SU(2) is rotation in 2d complex space or 3d real space

Rotations in this space are non-Abelian
(non-commutative)

It depend on the representation: scalar, spinor, vector

A representation is labeled by the number of DOFs it
has, like doublet or triplet

For the SM all we care is that 2 × 2 = 1 + 3

In the SM, the electron and the neutrino are in a
doublet
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SU(3)

U(3) is rotation in 3d complex space. We have
U(3) = SU(3) × U(1)

The representations we care about are singlets, triplets
and octets

The three quarks form a triplet

For the SM all we care is that 3 × 3 = 1 + 8

For non-Abelian group the charge is not just a number,
but a representation
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