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Yesterday

Feynman diagrams: tool for PT

(∆E)2 = E2
1−E2

2 = (m2+p2
1)−(m2+p2

2) = ∆(p2)
NR
−−→ ∆E

In principle we know now how to get from L to
predictions

Symmertires

Rotation in some mathematical spaces

We allways need to construct singlets

Today: SU(N), local symmetries and SSB
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HW

L = λ1XY Z + λ2X
2Z σ(XX → XY )

Energy conservation

Draw the diagram and estimate the amplitude
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HW

L = λ1XY Z + λ2X
2Z σ(XX → XY )

Energy conservation 2EX > mX +mY in CM frame

Draw the diagram and estimate the amplitude

Y

X X

X

λ1 λ2

Z
A ∝

λ1λ2
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Z − q2

qµ = pX
µ + pY

µ
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Symmetires
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U(1)

U(1) is rotation in 1d complex space

Each field comes with a q that tells us how much it
rotates

When we rotate by an angle θ we have

X → eiqθX

Consider qX = 1, qY = 2, qZ = 3 and write 3rd and 4th
order invariants

XX∗Y Y ∗ X2Y ∗
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U(1)

U(1) is rotation in 1d complex space

Each field comes with a q that tells us how much it
rotates

When we rotate by an angle θ we have

X → eiqθX

Consider qX = 1, qY = 2, qZ = 3 and write 3rd and 4th
order invariants

XX∗Y Y ∗ X2Y ∗ XY Z∗ X3Z∗ Y 2X∗Z∗
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SU(2)

U(2) is rotation in 2d complex space. We have
U(2) = SU(2) × U(1)

SU(2) is rotation in 2d complex space or 3d real space

Rotations in this space are non-Abelian
(non-commutative)

It depends on the representation: scalar, spinor, vector

Spin in QM is described by SU(2) rotations, so we use
the same language to describe it

A representation is labeled by the number of DOFs it
has, like singlet, doublet or triplet

For the SM all we care is that 2 × 2 = 1 + 3 so we know
how to generate singlets
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SU(3)

U(3) is rotation in 3d complex space. We have
U(3) = SU(3) × U(1)

The representations we care about are singlets, triplets
and octets

Unlike SU(2), in SU(3) we have complex

representations, 3 and 3̄

The three quarks form a triplet (the three colors)

To form a singlet we need to know that

3 × 3̄ = 1 + 8 3 × 3 = 3̄ + 6

For non-Abelian group the charge is not just a number,
but a representation
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A game

A game calls “building invariants”

Symmetry is SU(3) × SU(2) × U(1)

U(1): Add the numbers (X̄ had charge −q)

SU(2): 2 × 2 = 1 + 3 and recall that 1 is a singlet

SU(3): we need 3 × 3 = 3̄ + 6 and 3 × 3̄ = 1 + 8

Fields are

Q(3, 2)1 U(3, 1)4 D(3, 1)−2 H(1, 2)3

What 3rd and 4th order invariants can we built?

(HH∗)2 H3 UDD QUD HQU∗

HW: Find more invariants
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Local symmetires
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Local symmetry

Basic idea: rotations depend on x and t

φ(xµ) → eiqθφ(xµ)
local
−−→ φ(xµ) → eiqθ(xµ)φ(xµ)

It is kind of logical and we think that all imposed
symmetries in Nature are local

The kinetic term |∂µφ|2 in not invariant

We want a kinetic term (why?)

We can save the kinetic term if we add a field that is

Massless

Spin 1

Adjoint representation: q = 0 for U(1), triplet for
SU(2), and octet for SU(3)
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Gauge symmetry

Fermions are called matter fields. What they are and
their representation is an input

Gauge fields are known as force fields

Local symmetries ⇒ force fields

Y. Grossman The SM (4) CERN, July 8, 2014 p. 11



Gauge symmetry

The coupling of the new field is via the kinetic term.
Recall classical electromagnetism

H =
p2

2m
⇒ H =

(p− qAi)
2

2m

In QFT, for a local U(1) symmetry and a field with
charge q

∂µ → Dµ Dµ = ∂µ + iqAµ

We get interaction from the kinetic term

|Dµφ|2 = |∂µφ+ iqAµφ|2 ∋ qAφ2 + q2A2φ2

The interaction is proportional to q
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Accidental symmetries

We only impose local symmetries

Yet, because we truncate the expansion, we can get
symmetries as output

They are global, and are called accidental

Example: U(1) with X(q = 1) and Y (q = −4)

V (XX∗, Y Y ∗) ⇒ U(1)X × U(1)y

X4Y breaks this symmetry

In the SM baryon and lepton numbers are accidental
symmetries
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SSB
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Breaking a symmetry
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SSB

By choosing a ground state we break the symmetry

We choose to expend around a point that does not
respect the symmetry

PT only works when we expand around a minimum

What is the different between a broken symmetry and no
symmetry?
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SSB

Symmetry is x → −x and we keep up to x4

f(x) = a2x4 − 2b2x2 xmin = ±b/g

We choose to expand around +b/g and use u → x− b/g

f(x) = 4b2u2 + 4bau3 + a2u4

No u → −u symmetry

The x → −x symmetry is hidden

A general function has 3 parameters c2u
2 + c3u

3 + c4u
4

SSB implies a relation between them

c2
3 = 4c2c4
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SSB and generation of k

Symmetry x → −x and y → iy and we do not have y∗

V = ax2 + bx4 + cxy2 + dy4

For a, b, c, d > 0, to quadratic order, y is a k–less spring

For a < 0 we expand around a minimum, x = x0 + u
with x2

0 = −a/2b > 0 and y = 0

We get a quadratic term for y

c xy2 → c x0y
2 + ...

SSB of the symmetry generated a spring from a k–less
spring
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SSB in QFT

When we expand the field around a minimum that is
not invariant under a symmetry

φ → v +H

It breaks the symmetries that φ is not a singlet under

Masses to other fields via Yukawa interactions

φX2 → (v +H)X2 = vX2 + ...

Gauge fields of the broken symmetries also get mass

|Dµφ|2 ∋ A2φ2 → v2A2
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Fermions
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Fermions fields and power counting

A fermion kinetic term is more complicated

L ∼ ψ̄∂µγ
µψ

Since L has dimension 4, we see that ψ is dimension
3/2

So for fermions when we expand up to 4th order we
can have at most two fermion fields

Under Lorentz, the basic fields are left-handed and

right-handed. A mass term must involve both mψ̄LψR
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