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\ Summary of Lecture I ]
T ——

@ 2 main ingredients of Quantum Field Theory: Quantum Mechanics and Special Relativity

@ Invariance under Poincaré transformations (Lorentz transformations+translations)

-The different types of fields (scalar spin-0, vector spin-1 and spinor
spinl/2) are different representations of Lorentz transformations

- symmetry -> conserved quantity
@ relativistic wave equation not enough, only able to describe a single particle

We need a formalism to describe processes in which number of particles change

@ For fully consistent description, we need to reinterpret the field as a field

operator which can destroy or create particles: : we need to quantize fields -> Quantum
Field Theory



\ Classical Field theory ]

EEEEERETT T —

classica.l mechanic.s & system is described by S = dtﬁ(q
lagrangian formalism f

position

X’)

m
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omentum

. — —0
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\Classical Field theory and Noether theorem
T ——

Invariance of action under There is a conserved current/charge
continuous global transformation ~=~> 0,j" = 0 0 = /d?’xjo(x,t)
example of (To N,
transformation: p — pe (*)
if small increment a < 1 © — @ + 1000
0 = 1
60" = ia’
., 0L oL
invariance of £ under (*): 5/; :(;)ﬁ: ZO&({;}E—SOSO + (9g0’ 90/) 3 ( Ye ) .y
=0 Ox ¢8g0’ -

Euler-Lagrange equations:

52\ 00" 0 NS
= .J

conserved current



\ Scalar Field theory |
T —

Lorentz invariant

action of a complex S = /d4x(3usﬁ*3”90 _ mQSO*SO)

scalar field

Euler-Lagrange ( + m2) P = 0

equation leads to
Klein-Gordon equation

with solution a d>p iy L
superposition of 90(35) - / (ng)\/ﬁ(a'pe T+ bpesz)
plane waves: p

existence of a global U(1) Sp(gj) — 6@'9 gp(.ﬁlj)
symmetry of the action

d U(1) ch 311 ' v
conserved U(1) charge QU(l) — d 70 Ju = 1P %, u®P
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\ From first to second quantization
L ———

Basic Principle To quantize a classical system with coordinates q'and momenta p',

f ntum . . nom I:
%iﬁgni;: we promote q'and p'to operators and we impose [q', p'] =Y
same principle can where g () are replaced by Sp(tg CI?)
be applied to

scalar field theory and p'(t) are replaced by H(t, af;)

Pand 11 are promoted to operators and we impose [p(t, x),11(t,y)| = z’53(az —y)

3
Expand the complex ) — / d”p Qe T 4 ploipe
field in plane waves: P(x) (2m)3\/2FE, (a P )

where a, and b, are promoted to operators

scalar field theory is ap, al}] = (27%)6 (p—q) = p, bf,]
a collection of ,
harmonic oscillators destruction operator (%‘O >= O) vacduit\'«"?a?ée|o>

a generic state is obtained by actingon |y, . p, >= al a;f? 0 >

the vacuum with the creation operators Pt 6



\ Scalar field quantization continued

d’p E
H=T8yp — L = / 2 2 (@ + Bhby)

the quanta of a complex scalar field are given
by two different particle species with same
mass created by a* and b* respec‘rively

The Klein Gordon action has

a conserved U(1) charge due Qua) = /dgcvjo — / 3 ap@bTb
. . i0 27)

to invariance p(x) — €' p(x)

2 different kinds of quan‘ra each particle has
its antiparticle which has the same mass but
opposite U(1) charge

Field quantization provides a proper interpretation of "E<O solutions”

d>p ; :
xr) = a,e” PT 4 pleth?
coefficient of the positive energy solution e 'P* becomes after

quantization the destruction operator of a particle while the coefficient
of the eP* becomes the creation operator of its antiparticle

ay|0> and b,|0> represent particles with opposite charges 7



Similarly, we are led to quantize:

| Spinor fields

Lorentz invariant lagrangian L — \I/(Za — m)\Ij @ — ’)/’uau
Dirac equation (Z@ — m)\IJ =

anticommutation

fermionsi—y relations  {W, (1), U} (y,1)} = 6P (x — y)dap
\The electromagnetic field A,
R —
1 v
Lorentz inv. lagrangian [ = _Z MVF'LL where FM,, — 8MAV — 5’,,AM
Maxwell eq. QMF’[W — 0

Maxwell lagrangian inv. under A,u — A,u — 8,,,9



Summary of procedure
for building a QFT

RN ——

@ Kinetic term of actions are derived from requirement of Poincaré invariance

@ Promote field & its conjugate to operators and impose (anti) commutation relation
@ Expanding field in plane waves, coefficients a, d, become operators

@ The space of states describes multiparticle states

<+
a, destroys a particle with momentum p while a, creates it

eqg |P1...ppn >= a;fjl...a;;n\() >

crucial aspect of QFT: transition amplitudes between
different states describe processes in which the number
and type of particles changes



\ Gauge transformation and the Dirac action

Consider the transformation \Ij — 6iq9 \I} U(1) transformation

it is a symmetry of the free Dirac action — U (i~M _
if @ isconstant ‘C T \Ij (Z,y a,UJ m) \Ij

no longer a symmetry if ) — (9(33) .
However, the following action is invariant under v — €Zq9 \
A, —A,—0,0
L=VY(y"D, —m)V

------------------------------------------

where .D M\Ij — (a,u -+ ’LQA M)\Ij covariant derivative

------------------------------------------

We have gauged a global U(1) symmetry, The result is a gauge theory and
promoting it to a local symmetry A,u is the gauge field

conserved current: j e — \Ij’}/ H \Ij

conserved charge: Q= /deU‘IWO\I’ = /dSﬂ?\I’T\I’ ~> electric charge "



\ Electrodynamics of a spinor field |

£ = Ui Dy, — )l e D0 = (5, 4 i AL )

------------------------------------------

L=V(y"d, —m)¥U — qA,U~*T

Coupling of the gauge field
A,u to the current j'u — \IJ/}/“\IJ



From Quantum Electrodynamics to the
electroweak theory

These transformations are \Ij — qu v \Ij
elements of U(1) group

In the electroweak theory , more U - exp (Zg T. )\) I

complicated transformations, belonging

to the SU(2) group are involved
where 7 = (7'1772,’73) are three 2*2 matrices

Generalization to SU(N) \Ij(ﬂf) — U(ZU)\IJ(ZC)
U(.CIZ‘) _ eig@"’(x)T“

A, (z) = UAUT — g(é’MU)UT

N?-1 generators
(NxN matrices)



Gauge theories: Electromagnetism (EM) & Yang-Mills

EEE——— e —————— — i

EM U(1) ¢ — Gia¢ but O — €' (0u9) +i(Iur) 6
|

| 20 if local transformations
|

EM field and covariant derivative 0,0 +ieA,p — (0,0 +icA,d)

the EM field keep track of the phase in

different points of the space-time F, =04, - 0,4,

_ _ _ — — — — -
_ —

~ Yang-Mills : non-abelian transformations & — Ud

0,9 +igA,p = U(0ud +19A,0)

F,, =0,A, —0,A, +iglA,, A,
\(—J

non-abelian int.




The Standard Model: matter

the elementary blocks:

LEPTONS QUARKS
tau ‘
% each of the 6
muon ” gy /N quarks
i L exists in three
electron o5 Yolors

x200 :
: composite states (white objects
no composite states
made of leptons 0 baryons  Profon »=(wu.d)

neutron n = (u,d,d)

-------------
--------------------
------
-----
-----
. x
o ta
«
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.
.
““
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The Standard Model : interactions

light
Ul(l electromaguelic ¢ R
A Photon ’7 molecules
e SU(2)¢ weak ntenacliond (3 decay o
M ......... Wj: F¥ 1) 10
i s R D Bt Ve
“bosons W, 2%

.
.

- .

L] .t

.......

------
" ue
------------
---------------------

¢ decay 1

55U = 50'Th+ 3He

0 SU(S)C Strong Cuteractiond { atomic nuclei

strength



Interactions between particles

Elementary particles interact with each other by
exchanging gauge bosons



The beauty of the SM comes from the identification of a unique
dynamical principle describing interactions that seem so different
from each others

The most general lagrangian given the particle content

1 |4 1 a apr 1
Y A T A A

+Q;iDQ; + uiilPu; + d;ilpd; + LiilDL; + €;ilDe;

a auv
e

—|—YJJQZU]F] -+ Y;JQZCZ]H -+ Eijiz’ejH + ‘DMHP

R e e TR

UV PO a a
64m2 " GG oo

What about baryon and lepton numbers? -> accidental symmetries!

17



\ Abelian versus non-abelian gauge theories

_ 1
The (Yang-Mills) action Ly py = W(iv* D), — m)¥ — §F,LWFIW is invariant under

--------------------------

--------------------------

Abelian U(1) symmetry Non-abelian SU(N)
U(QIZ‘) _ 67Lq9(a¢) U(SIZ‘) _ ez’g@"’(x)T“
T°: N?-1 generators (NxN matrices) acting on
Au( ) = Aa T"
A ) = UA,UT

s ™
coupling constants /
infinitesimal
>WA4A Tr‘gns?‘or'rsngjrion U(x) = 1+igh"(2)T + O(6%)
\ A (z) — A% +8,0% — gf**epb AC

D,V = (8, 4+ igA,) D,V = (8, —igA®T)

18



\ The gauge symmetries of the Standard Model ]

= e —
Gauge Group U(l)y  (abelian)

/ . —|—’LYC\£Y
w =€ Tﬁ»
1
B//L = B'u — ?(%ozy

B,, = 0,B, — 9,B,
Dyr = (0, +ig'Y B,) ¥R

Gauge Group SU(2)r  acts on the two components of a doublet W y=(u,d) or (VL ,el)
ma . a _
\IJL — e_ZT o wL U= 1" T = 0%/2 Pauli matrices
_ (01 (01 (10
Ws, = 0,Wg—0,Wi+ge™WWe, a=1,...,3 =10 )2="t_; o)==y

Dypr, = (8, —igWiT) ¢,

Gauge Group SU(3). q=(91,92.93) (the three color degrees of freedom)

__sa aa e als PN} ) _ :
q— e iT« q [J = ¢~ T {Ta,Tb-‘ _ ZfabcTC (3x3) Gell-Man matrices
Gaa armarr—1 7 1 o 1 o0 0 —i o0 1 0
MT —>UGMT U ——8MUU A = 1 0 0 Ao = i 0 0 A3 = 0o -1
g 0 0 0 0 0 0 0 0

GZu:auGz_auGZ+gfachsta a=1,...,8 ( o o 1 ) ( 0o 0 —i ) ( 0

Ag = 0 0 0 Ay = 0 0 Ag =
1 0 0 7 0

Dyug = ((% - igGZT“) q



\ The gauge symmetries of the Standard Model
T ——

1

Gauge Group U(l)y  (abelian) /:'YM — \I/(’L’)/MDM . m)\If o §F/,L1/F'uy
I _ +:Y ay
vo=e 1 v all Standard Model fermions

Bl =B, — —/8 ay
e carry U(1) charge

B,, =90,B, —0,B,

Dr= (0, +ig'Y B,) ¥R

Gauge Group SU(2),

\PL _) B—ZTaOéawL U — e—iTaOéa
only left-handed fermions charged
Wa, = 8,8 — 8, W + g WIWE, a=1,....3 under it -> chiral interactions

W =(u.d) or (VL .eL)

Dypr = (0, —igWaT*) 9y,

Gauge Group SU(3). q=(q1.92.93)
g — e 1% U = ¢ 170" all quarks transform under it

-> vector-like interactions

ara arparr—1 i —1
GLI" > UGLT®U™! = 9,UU

a a a abc ~b e
G, = 0,G — 9,G% + gf**Gh G, a=1,...,8

Du,q = (au —1g GZTG) q 20



\ The lagrangian of the Standard Model ]

Leauge = 4GZVG““ Y- 4WﬁuW“” Y- ZB »B"" describe massless gauge bosons

describe massless fermions and their

Lrermion = Y 107" Dug + Y _ibry" Dyt + ) L ibny" Dyutor interactions with gauge bosons
quarks Y, Yr
N " Dutr=[0u+idYB] v
only left-handed all fermions carrying a U(1)y charge
fermions i.e. all Standard Model fermions

ives mass to EW 1, N
Litiggs = (Du®)! D@ + 1”70 — A ((I)T(D) —7 gauge bosons 327t T MWV

responsible for
g vy .Y g : — :
Dy = {% 5 (TEW 7T W) —igm W+ 2534 ® . covariant derivative of the Higgs electroweak

1-
H charged under SU(2) xU(L)y [ Ymmerry

breaking!
Lyukawa = — VI L® lg —Y3Q® dg — Y, Q@ ug + hoc. —>» gives mass to fermions
SUB) x SUR2), xU((l)y — SU3) x U(1)em
8 massless 3 massive gauge bosons 8 massless 1 massless photon f)/
gluons W* W- Zo gluons

remaining unbroken symmetry
The W and Z bosons interact with the Higgs medium, the y doesn't. 7]



1 1 1
£gauge — _—Ga Ga’w/ — —Wa Wa’LLV — ZBMVB’LW

4 K 4 B
SU(3)e SU(2)r U(1)y
G4, = 0,G% — 0,G% + gf " GLGS, We, = 0,W — 0,Wi + ge™™ WiWy, By = 0By — 0, By,
in mass eigen state basis
Wi:W;}:FiW/% ZM:WECOSHW—FBMSinQW
K V2 A, = —Wﬁ’ sin Oy + B, cos Oy
cosOw = g/\/ g + g2 sin Oy = 9// V g%+ g
p,C Wa_ Wa_
Ips three gauge q PN 4 7z
ree gaug NG L4, S~
P2 boson vertex kA 7
/pvl + W+
I, a v, b Wy B
J— + —
Wt W W W
o,d psc N N\
o~ s four gauge A, A, Z, Z,
! boson vertex Wi Wy o Wi Wy
P, P2 N N
a bb no such N N
interactions A, Z, W W

for photon! 22



Charges of the Standard Model fields

Field SUB) SUR2), T Y Q=T1°+Y
g, (gluons) 8 1 0 0 0
+
(W5, W) 1 3 (£1,0) 0 (£1,0)
B 1 1 0 0 0
1
dr,

N[

HH
|
AN
S “%_;
N—
[
o -
/\/\ D /\
|
N —=

N~ | O

N[ —

N[
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(Tl Standarnd Madel /ﬁ/ Durticlt Plsics

- one century to develop it
- tested with impressive precision

- accounts for all data in experimental particle physics

Forces

SU(3)exSUR2)xU(1)y

INEEFT
+ (EPY +he
I L ‘5())('552514'\(-«

AR -V@)

o N "EEE L

M N;

EW unification

flavour
sector

neutrino mass
sector

(if Majorana)

(spontaneous) electroweak
symmetry breaking sector

HERA

_ N
q’ a # Hi E'p NC 94-00

% 10 L o ZEUS e'p NC 99-00
= E — SMe*p NC (CTEQED)
o™ -

g

s ,felectromds

netism
10 = =,

neutral

10 £ current

3F
10" rweak force

* H1e*p CC 94-00
4 = ZEUS e'p CC 99-00
10 &
E — SME+pCC(CTEQGD)Char|9€d
s
107k current
s
10 E
F y<09
103_ ? Ll AR |
1IJ'3 1D4

Q% (GeV?)

This room is full of photons
but no W/Z

The symmetry between W, Z and y

is broken at large distances

EM forces = long ranges

Weak forces % short range

m, <6 X 10717 eV
my+ = 80.425 + 0.038 GeV
myzo = 91.1876 £ 0.0021 GeV

The Higgs was the only remaining unobserved piece
and is a portal o new physics hidden sectors



Historically
F 6/”/7@(/ %/ (paper rejected by Nature: declared too speculative )

n = n e
n L D+e + e
L = Gr(np)(vee)

*
o

.
.
.
] .
........
L] .
"""""
-------
-------------
-----------------------

9 O no continuous limit
A x GrE O inconsistent above 300 GeV

Gnge tfeery

microscopic theory
(exchange of a massive spin 1 particle)

.
o*
.
.

‘e
‘e
‘e

2
Gr = V29 exp: mw=80.4 GeV
Sm%[/ © g ~0.6, ie, same order as e=0.3
unification EM & weak interactions
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Vll

muon decay

n 31% ¢
)

d

up

beta decay



The (adhoc) Higgs Mechanism (a model without dynamics)

EW symmetry breaking is described by the condensation of a scalar field

Vig)vt Y _ _
0.02 O
0.01 / ®=1v Pz
i ‘ ‘ ‘ ‘ ¢ (GeV) _ -
00 150 200 250 /300 Higgs boson:
—0.01 Background  excitation
—0.02 ! VG'U?, nggs of the hlggs
: medium medium

The Higgs selects a vacuum state by developing a non zero background
value. When it does so, it gives mass to SM particles it couples to.

2 A
V(®) = %CDT(I) +Sofe

Why is u° negative ?

the puzzle: | we do not know what makes the Higgs condensate.

We ARRANGE the Higgs potential so that the Higgs condensates but this

is just a parametrization that we are unable to explain dynamically.
27



€ We have quantized free fields

€ We have introduced interactions

(particle creation and annihilation can only
take place in theory with interactions)

We now would like o compute probability of
processes like for instance a two-body decay
a->c+d or a two-body reaction a+b->c+d

"S-matrix approach”-> calculate probability of
Transition between two asymptotic states

28



\ The S-matrix ]
T —
We consider a state |a>(+) which at an initial time tiis labelled |a>.
Similarly we consider a state |b>(t) which at a final time t¢is labelled |b>

At tfthe state |a>(1) as evolved as e_ZH(tf_ti) ‘CL >
where H is the hamiltonian of the theory

The amplitude for the process in which the initial state |a>
evolves into the final state |b> is given by

./\/l —ZH(tf —1; )

the final state is a set of The initial state is either a one-
well-separated particles par‘rlcle (decay) or two well-

long after the interaction separaTed particles (scattering),

evolution operator long before interaction happens

"S-matrix”
la> and |b> are both described by free fields
The probability of the process is given by |M |2

and that can be linked to a transition rate per volume unit as measured by an experiment
29



\ Link to observables
T —

@ cross section: reaction rate per target particle per unit incident flux
[1/time]
[1/(time length?)]

--> has units of a surface
measured in multiples of 1 barn= 1

0~ %4 cm?

typical relevant LHC cross sections ~ in pb

1 picobarn= 1 pb= 10-3%¢m?

@ Decay width (inverse of lifetime of a particle) =transition rate

has dimension [1/time]

Example: decay width of EW gauge bosons
"%

I X ‘M‘Z ‘/coupling

g«
d

Wy e 30

scales as the square of the coupling constant

c



\ Z couplings to fermions |

The coupling of Z ’rolany fermion is proportional fo  [3 — sin? Oy ()

where  [o — +— is z-component of weak isospin and Q is electric charge
2 2 sin2 = 0.231
wL I3 —sin? 6y Q sin” Oy ¢
4 7 >«//vn A
L M

)

for the quarks:

ur,  Iz3=+41/2  Q=+2/3
UR I3 =0 Q=+2/3
drp, Is3=-1/2 Q=-1/3
dn =0 Q=—-1/3

and similarly for c,s, and b (t is too
heavy for the Z to decay into it)

for the leptons:
er, Is = —1/2 Q=—1
€ER Ig =0 Q = —1
VeL ]3 :—|—1/2 Q:O

and similarly for U, T, V,,, Ut

31



\ Branching fractions for Z decay I

for the quarks: for the IepTons
ur, I3 = —|—1/2 Q=—|—2/3 €r, I3 = 1/ Q=-1
UR I3 =0 Q:‘|‘2/3 CR 13:0 Q:—l
dr, Iz=-1/2 Q=-1/3 Ve, Is = +1/2 Q=0
dpn =0 Q=—1/3
and similarly for c,s, and b (1 is too and similarly for Vs Ty Vyy Vr

heavy for the Z o decay into it)
The decay rate is proportional to the square of the coupling constant [3 — Sin HWQ

Ol
Also, for quarks, there is an additional factor (1 + 2—) where o = g; /4m = 0.118
due to the additional gluon emission m

B(Z —wete”)=B(Z —efe;)+ B(Z — efep)

I'(Z —efe;
B(Z = eper) = > F(é—> eLte'Ll) tiparticl
all particles pariicie, antipariic 6) gluon s

N\NNN

Z

Nall

B(Z = vv) =B(Z = veve) + B(Z = v,v,, + B(Z — v,1;) q
= 3B(Z — v.v.) = 20%
B(Z —ete )=B(Z—=u"pu )=B(Z —1t777)=3.33%
B(Z — all hadrons) = 3 x [B(Z — uii) + B(Z — dd) + B(Z — s5)
+B(Z — cc) + B(Z — bb)] = 69.9% 3



\ Branching fractions for W decay |
T —————

— — — — ] — ] —
W= —e U, p v, 7 Ur,du,sc.

BR(W™ - e v,) =BRW™ — uv,)=BRW™ — 17 1,)
1
- 34+6(1+ay/m)

— 0.108,

6(1 + ag/m)
3+ 6(1 4 ay/m)

BR(W™ — hadrons) = = 0.675.
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