# **Beyond the Standard Model**

G.F. Giudice



Lecture 3

CERN Summer Student Programme 2014

#### Inflation explains the initial conditions of the universe

#### No bang, but

- Uniform and flat because of superluminal expansion
- Expanding because of initial kick from vacuum energy
- Low entropy
- Hot because, at the end of inflation, vacuum energy is released in the form of thermal energy

A new spin-0 field responsible for inflation?













## The Standard Model is an extraordinary conceptual success



- GR & YM are elegant structures dictated by symmetry, have few free parameters, and fare marvelously with exp. data
- The Higgs sector looks like a provisional structure
  - → we have to look deeper (BSM)

### Symmetry is the language of the fundamental laws of nature

SM based on a symmetry principle:

SU(3)×SU(2)×U(1)

$$\Psi$$
 $\Psi$ 
 $g_s$ 
 $g, e$ 

Can we go further?

Grand unification: single force → single coupling

## Classical physics: force depends on distance Quantum physics: charge depends on distance



A strange phenomenon

QED: virtual particles screen the charge → charge gets weaker as we move away

Even stranger

QCD: virtual particles antiscreen the charge → charge gets stronger as we move away

$$\frac{dg_i^{-2}}{d\ln Q} = \frac{b_i}{4\pi}$$





The screening (and antiscreening) depends on all species of existing particles

Extraordinary extrapolation to  $M_X \sim 10^{14-16}$  GeV Above  $M_X$  theory with single coupling (SU<sub>5</sub>, SO<sub>10</sub>)