Beyond the Standard Model

G.F. Giudice

Lecture 5

CERN Summer Student Programme 2014

Why is supersymmetry interesting?

an apparently miraculous coincidence

Supersymmetry cannot be an exact symmetry of our world (spin-0 electrons do not exist)

The dark side of the moon is hidden

gauge symmetry $\rightarrow m = 0$ supersymmetry $\rightarrow \widetilde{m} = 0$

With spontaneously broken symmetry, mass relations implied by exact symmetry can be modified

The screening (and antiscreening) depends on all species of existing particles

 $b_3 = -7, b_2 = -19/6, b_1 = 41/6$

b₁=11

 $b_3 = -3, \quad b_2 = 1,$

If supersymmetry is discovered, it could hint towards unification of forces at 10¹⁶ GeV

How will the LHC detect supersymmetry?

R-parity

Summary of CMS SUSY Results* in SMS framework

SUSY 2013

9

In spite of our successes, we are still in the dark...

We still have to discover 96% of the universe!

Maybe supersymmetric particles are all around us at this very moment...

Link dark matter ←→ weak scale

If a stable massive particle is in thermal equilibrium in the early universe, its density today can be computed

T >> M

 $T \approx M$

T << M

$$\sigma = \frac{k}{128 \pi M^2} \implies \Omega_{DM} = 0.22 \left(\frac{M}{\sqrt{k} \text{ TeV}}\right)^2$$

Peculiar coincidence with the weak scale: is dark matter made of supersymmetric particles? Because of R-parity, LSP can behave as DM ₁₁

Several LSP per liter of space
(moving at one million km/h)

Half a kg of them in the space occupied by the earth

'matter: 6×10²⁴ kg dark matter: 0.6 kg

Power generated by DM on one kg of matter: 10⁻¹⁹ watts → 1% of the moon for one light bulb

LHC could artificially produce DM

Complementarity of information

EXTRA DIMENSIONS?

Extra dim is periodic or "compactified" $x_5 + 2\pi R = x_5$ All fields can be expanded in Fourier modes $\varphi(\hat{x}) = \sum_{n=-\infty}^{+\infty} \frac{\varphi^{(n)}(x)}{\sqrt{2\pi R}} \exp\left(i \frac{n x_5}{R}\right)$ 5-dim field \Leftrightarrow set of 4-dim fields: $\varphi^{(n)}(x)$ Kaluza-Klein modes Each $\varphi^{(n)}$ has a fixed momentum $p_5 = n/R$ along 5th dim D-dim particle dimensions $E^{2} = \vec{p}^{2} + \underbrace{p^{2}_{extra}}_{extra} + m^{2}$ KK mass 4-d space mass

From KK mass spectrum we can measure the geometry of extra dimensions

If you have any questions: G.F. Giudice CERN-TH, room 4-2.056 phone: 022 767 3203 e-mail: gian.giudice@cern.ch

If you want to know more:

