Standard Model @ Hadron Colliders
III. Triple Bosons & Top Quark

P.Mättig
Bergische Universität Wuppertal
W mass result

D0 measurement same precision as previous world average

A huge achievement after 20 years of work!
High precision possible at proton colliders
Important constraint on Standard Model Higgs

Peter Mättig, CERN Summer Students 2014
Into the heart of gauge theories
Looking for TGVs
(Triple Gauge Boson Vertices)

W – Boson weakly and electrically charged
⇒ coupling to Z^0 and γ

Very fine compensation of contributions
- motivation to introduce Z^0
- Relates couplings to fermions and bosons

First measurements at e^+e^- collider LEP
Onset of cancellation process seen

Quantify with ‘anomalous couplings’

$$\frac{\mathcal{L}_{WWZ}}{g_{WWZ}} = i \left[g_1^Z \left(W_{\mu\nu}^+ W_{\mu}^\mu Z^\nu - W_{\mu\nu} W_{\mu}^\mu Z^\nu \right) + \frac{k^2}{m_W^2} W_{\mu}^\mu W_{\rho\mu}^\pm W_{\nu}^\pm Z_{\rho\nu}^\rho \right]$$
Signatures of anomalous couplings

Clearest signature in excess of events with high p_T

Selection of ZW events: three hard leptons + missing E_T

Step 1: $Z^0 \rightarrow e^+e^-, \mu^+\mu^-$ Step 2: transverse mass Step 3: p_T of Z

Peter Mättig, CERN Summer Students 2014
Anomalous 3 – boson couplings

Measurements agree with Standard Model expectation

Sensitivity to possible deviations at LHC approaches LEP: a few %

Increased statistics and higher energies during the next years will significantly boost precision
Special interest: W pairs from VBF

1960s: event rate for $W_L W_L \rightarrow W_L W_L$ explodes at 1.2 TeV. Higgs boson should cure this: theory works fine.

Require high jj mass + high $|\Delta y|$.

Expected background: 16.9
Expected $WWjj$: 15.2
Observed nb. Events: 34

\rightarrow Evidence for VBF
Testing electroweak theory at LHC/Tevatron

- Millions of Z^0, W^\pm allow tight constraints on pdfs, strong interactions
- Electroweak theory probed at multi – TeV scale: no deviation found
- The mass of the W boson improved by factor 2
- Precision of Vector boson self interactions (triple, quartic) will soon superseed LEP
Top quark
Basic facts
The mysterious top quark

Top quark: no internal structure but heavy as a gold atom

\[M_t = 173.3 \pm 1.1 \text{GeV} \]

i.e. coupling strength to Standard Model Higgs Boson

\[m_t = \frac{\lambda_t \cdot v}{\sqrt{2}} \]

\[\Rightarrow \lambda_t = 0.996 \pm 0.006 \]

Suggests a special role of top quark?
A constrained giant?

Top quark has same role as up-quark (electron, \(\nu \)) All are 'matter' particles, but

\[
\frac{m_{\text{up}}}{m_{\text{top}}} \sim 10^{-5} \\
\frac{m_{\nu}}{m_{\text{top}}} \sim 10^{-11}
\]

Does the top quark have the same properties as light fermions?
- Coupling strengths to photons, gluons, \(W \) – bosons?
- Charge
- Weak parity violation

......
A brief history of the top quark

Known to exist since 1973 ➔ search for 20 years

Phenomenological prejudice: around 15 GeV

(s\bar{s}) = 1 \text{ GeV}, (c\bar{c}) = 3.1 \text{ GeV}, (b\bar{b}) = 9.4 \text{ GeV}, ➔ (t\bar{t}) = 30 \text{ GeV} ??

motivation for several accelerators: PETRA/PEP, TRISTAN, SppS, LEP,

No signature found!

Observed in 1995 at Tevatron, a few 1000 top’s collected

LHC currently produces ~ 50000 tt events/day

In net years: close to 1M/day
Phenomenology of heavy top

For lighter quarks:
strong interaction $>>$ weak interactions
\Rightarrow colour neutral hadrons

competing interactions: who’s faster?

For top quark: strong interaction $<$ weak interactions
\Rightarrow top quarks decay before hadrons formed, ’free quark‘
Phenomenology of heavy top

Decay properties of top quark unambiguously predicted by SM
Decay fractions largely determined by fractions of W – decay

<table>
<thead>
<tr>
<th>Top Pair Decay Channels</th>
<th>$t\bar{t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(only) 6 quarks</td>
</tr>
<tr>
<td></td>
<td>largest fraction, very high background</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>$e+csudt+m+$</td>
</tr>
<tr>
<td></td>
<td>$e–csudt–m–$</td>
</tr>
<tr>
<td></td>
<td>$\tau+jets$</td>
</tr>
<tr>
<td></td>
<td>$e+\muon+jets$</td>
</tr>
<tr>
<td></td>
<td>$e+\tau+jets$</td>
</tr>
<tr>
<td></td>
<td>$e+e$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decay properties of top quark</th>
<th>$t\bar{t}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\rightarrow 2 quarks, 2 charged lepton, 2 neutrinos</td>
</tr>
<tr>
<td></td>
<td>Only 5% 'usable', very low background, difficult to reconstruct</td>
</tr>
</tbody>
</table>

99.1% of all top quarks decay into a bottom quark!
A semileptonic tt event
Surveying the top quark
Cross Section

Test of QCD with massive quarks
Measure coupling strength gtt

Event selection
- 4 high p_T jets
- isolated electron/muon
- missing transverse energy

What fraction of tt events are retained after selection

Luminosity: How many proton collisions?
Cross section determination

Experimental precision depends on how well
- background, efficiency, luminosity can be controlled

Key issue determine efficiency

Largest uncertainties:
- modelling of top
- parton distribution fct.
- Background yield
- Jet energy scale
- selection efficiencies e, μ

Experimental uncertainty ~ 2.3%
Luminosity uncertainty ~ 3.1%
Beam energy ~ 1.7%

Total uncertainty 4.3%

Improvement by factor 2–3 within a year!

Peter Mättig, CERN Summer Students 2014
Cross section measurement

Theoretical uncertainty <5 % (significant improvement last 10y)
Theory & experiment uncertainty about equal

Very good agreement between data and expectation
Weighting the top quark
Mass of the top quark

A fundamental parameter of the Standard Model

A broad spectrum of decays and methods

Note: first time a quark mass can be measured directly

(Lighter quarks to be inferred indirectly from hadron masses)
Top mass from $l+\text{jet}$ decays

Favoured topology: $t\bar{t} \rightarrow 4 \text{ Jets (2 b \text{–jets})} + e/\mu + \nu$

The problems:
- How to get the z – component of ν
- Out of 4 (or more) jets: which jet belongs to which top?
- What is the energy scale of jets (and electrons)

$M^2 = \left(\sum_{\text{jet } i} E_{\text{jet } i} + E_l + E_\nu \right)^2 - \left(\sum_{\text{jet } i} \tilde{p}_{\text{jet } i} + \tilde{p}_l + \tilde{p}_\nu \right)^2$

Peter Mättig, CERN Summer Students 2014
Problem 1: $p_z(\nu)$

Constraint from W - mass

\[
M_W^2 = (E_1 + E_\nu)^2 - (p_x(l) + p_x(\nu))^2 - (p_y(l) + p_y(\nu))^2 - (p_z(l) + p_z(\nu))^2
\]

\[
E_\nu = \sqrt{p_x^2(\nu) + p_y^2(\nu) + p_z^2(\nu)}
\]

Note: ν – mass completely negligible

Quadratic equation \Rightarrow 2 solutions

physics: in 70% the solution with smaller p_z correct
Problem 2: which jets?

Two facettes:
- if more than 4 jets (initial state rad.) mostly jets with highest p_T
- if exactly 4 jets: which belongs to which top quark?

4 jets \rightarrow 4 possible assignments
$(j_A j_B j_C / j_D, j_A j_B j_D / j_C, \text{})$

Note: if b – jets identified, reduced to 2 possibilities

Important constraints
- mass $(jjj) = \text{mass}(jlv) (= M_t)$
- mass $(jj) = M_W$

Peter Mättig, CERN Summer Students 2014
Problem 3: jet energy scale

Measure signals in calorimeter \rightarrow derive jet energy
Implies uncertainty!
\rightarrow relates directly to top mass

$$M^2 = \left(\sum_{\text{jet }i} E_{\text{jet }i} + E_l + E_\nu \right)^2 - \left(\sum_{\text{jet }i} \tilde{p}_{\text{jet }i} + \tilde{p}_l + \tilde{p}_\nu \right)^2$$

Top – quarks offer ‘self calibration’
$M(jj)$ has to be equal M_W
\rightarrow change JES such that fulfilled
Still dominant uncertainty of M_t
Use all information

Theoretical pred with M_1(top)

Theoretical pred with M_2(top)

Convolute with experimental effects

Sum over all events and find combine weights

$W(M_1$(top$)) = w_A \cdot w_B \cdot w_C \cdot \ldots = \Pi w_i \implies \mathcal{L}(M_1$(top$))$

$W(M_2$(top$)) = w_A \cdot w_B \cdot w_C \cdot \ldots = \Pi w_i \implies \mathcal{L}(M_2$(top$))$

......

Find M(top) with maximum weight

Recent CMS: $172.04 \pm 0.19 \pm 0.75$ GeV
statistical & systematic uncertainty

Peter Mättig, CERN Summer Students 2014
Measurements of M_{top}

Combination of all measurements (March 2014)

$173.3 \pm 0.3 \pm 0.7 \text{ GeV}$

$\Rightarrow 0.4\%$ precision!

Caveat:
Relation to ‘theoretical’ top mass somewhat uncertain due to QCD models

Other methods developed
Top Quarks at Highest Energy

Top production at TeV energies: Deviations from Standard Model?

 Decay $t \rightarrow bqq$ at high p_T: quarks tend to merge in one jet

Low p_T selection to be modified
One ‘Fat’ jet with substructures

Lorentz Boost

Several partons merge into a single jet

Peter Mättig, CERN Summer Students 2014
Searching for a $t\bar{t}$ - resonance

Postulated in many BSM scenarios

\Rightarrow at this stage no new particle observed

$\bar{t}t$ masses up to 3 TeV well described by Standard Model strong interactions

Sensitivity to new ultra-heavy particles

$X \rightarrow t\bar{t}$
Testing top quarks at LHC/Tevatron

- Proton colliders only source of information
- Measurements and theory of cross section by now uncertainty of \(\sim 5\% \)
- Top mass directly measured to 0.4%
- Theoretical interpretation limiting?
- Top decays and production show no deviation from SM expectation
The Higgs mechanism - basics
Electroweak symmetry breaking

Masses of bosons and fermions (w/o new mechanism)
In conflict with local gauge invariance
- Both for fermions and vector bosons

Also: boson masses lead to
a. infinite cross sections $W_L W_L \rightarrow W_L W_L$

\[M_H \leq \left(\frac{8\pi\sqrt{2}}{3G_F} \right)^{1/2} \sim 1 \text{ TeV} \]

b. or a strongly coupling between W's \Rightarrow many W's,

Way out: introduce new scalar (spin 0) particle
The solution 'Higgs mechanism'

The Standard Model answer:
- Higgs fields
 - gives mass to bosons
 - provides means for fermion mass
 - implies elementary physical particle
 - gives mass to Higgs Boson
- NOTE: no prediction of masses!

Introduce potential (by hand)
Two unknowns: λ, μ

$V = -\mu^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2$

$$\frac{\partial V}{\partial \phi} = 0 \implies \phi_0 = v^2 = \frac{\mu^2}{\lambda}$$

v: 'vacuum expectation value'
$M_W \implies v = 246$ GeV

Mass of W
Mass of Higgs
Mass of fermions

$M_W = \frac{1}{2} v \cdot g$
$M_h = \sqrt{2} \cdot \lambda \cdot v$
$M_f = \frac{1}{\sqrt{2}} G_f \cdot v$
A few notes on mass

Peter Mättig, CERN Summer Students 2014

Dynamical generation of hadron masses →
99% of visible matter due to strong interaction

This principle does not work if particles are elementary!
The Higgs Boson: well known!

..... except its mass! (until 2012)

What is to be known to search for the Higgs boson:

- how is it produced?
- how strongly is it produced?
- how does it decay?

Devise search strategy along this line
Higgs searches at Hadron Colliders

Peter Mättig, CERN Summer Students 2014
How the Higgs decays

Peter Mättig, CERN Summer Students 2014
How strong is the coupling?

Width of higgs boson proportional to coupling

Threshold W/Z passed:
High coupling
Initial W/Z: high X-section

Very small width ...
Very small coupling!
How to interpret the measurements
Test if data EXCLUDE hypothesis

Step 1: X-section at mass m_H that can be excluded @ 95% CL

Step 2: Plot ratio
\[\frac{\sigma(\text{exclusion})}{\sigma(\text{Xsec of SM expectation})} \]

→ If below 1:
Higgs excluded in mass range

→ If above 1:
Higgs cannot be excluded since either: 'hint', 'signal'
or: no sensitivity for exclusion

Compare to expectation (i.e. simulation assuming no signal)
IF expectation above SM Higgs X-section: no sensitivity to exclude
IF expectation below BUT data are high: a first hint

Peter Mättig, CERN Summer Students 2014
95% CL Limits $ZZ \rightarrow (l^+l^-)(l^+l^-)$

Simulation with NO signal, but luminosity, detector effects,

\rightarrow EXPECTED limit

Oscillations around expectation: more or less events than background expectation

No sensitivity
Small $\sigma \times BR$

INTERESTING!
Data can exclude less than expected by large margin

Regions of ratio < 1
EXCLUSION!

Peter Mättig, CERN Summer Students 2014
p - value probability of stat. fluctuation

'p – value‘ : how likely is it that at a certain mass M_H
- the expected background fluctuates upward
- to produce at least the number of observed events

Observed dearth or excess reflected in wiggles
Convention:
Signal observed if $p > 5\sigma$
Combining all searches

High mass range:

- $ZZ \rightarrow l^+l^-l^+l^-$
- $ZZ \rightarrow l^+l^-\nu\nu$
- $ZZ \rightarrow l^+l^-qq$
- $WW \rightarrow l^+\nu l^-\nu$

Higgs EXCLUDED $2 \cdot M_W < M_H < 558$ GeV (CMS: 600 GeV)

High mass Standard Model Higgs boson (almost) excluded