RF HARDWARE OPTIONS

Very preliminary!

E. Jensen, 29-May-08

The 10 MHz route

■ Present PS 10 MHz system:

- 10+1 cavities, 2 gaps/cavity, 10 kV/gap
- 2.7 … 10 MHz tuning range
- longitudinal imp. 3.5 k Ω /gap, reduced to 110 Ω with FB. (total 70 k Ω w/o FB, 2.2 k Ω with FB)
- 2.4 m length/cavity (24 m long straight sections)

■ Required in PS2 @ 10 MHz:

- 500 kV (i.e. around 26 of these cavities or 60 m straight sections)
- 13, 20, 40 and 80 MHz system, similar to present systems would also be required.
- If the space is available, this can be done; no significant R&D required.

Present PS 10 MHz cavity

Installed around 1971

"standard" ferrite cavity

Tuning bias current circuit: azimuthal magnetization, ferrite toroid stacks in anti-series and with figure-of-8 current.

RF: 2 gaps (Cg) and input of coaxial lines (variable L) in parallel for the amplifier (in series for the beam). The RF magnetic field is azimuthal (parallel to DC magnetization).

µ: slope of magnetization curve

But: area inside hysteresis loop corresponds to losses. Loaded Q about 30.

May 29, 2008

The 40 MHz route

- Required:1.5 MV, 18.5 ... 40 MHz
- Also required: new LEIR h=10 system, 10 ... 18.5 MHz, ~15 kV; not considered here (easier than the PS RF system). Straight section available in LEIR? Alternative?

Obvious question: can the concept of "standard" ferrite cavities be extrapolated to higher frequencies?

"Standard" ferrite cavity at higher f?

□ In principle yes, but

- μ_i decreases with *f*!
- smaller µ_i, smaller tuning range

 Losses grow with *f*!
e.g. decreasing resistivity for NiZn ferrites:

PS2 Internal Review

FREQUENCY (MHz)	RESISTIVITY (Ωm)
0.1	≈10 ⁵
1	≈5.10 ⁴
10	≈10 ⁴
100	≈10 ³
E Joneon "RE Hardy	zaro ^{ll} 7

Excerpt from Ferroxcube[®] catalog

MATERIALS FOR PARTICLE ACCELERATORS

Materials and relevant values

PARAMETER	8C11	8C12	4M2	4E2	4B3
μ _i (±20%)	1200	900	140	25	3 00
μ _{rem} approx.	850	600	130	20	-
B _s 25 °C (mT, 800 A/m)	≥300	280	250	250	≥3 00
B _s 40 °C (mT, 800 A/m)	≥280	250	220	220	_
H _c (A/m, after 800 A/m)	≤20	30	100	500	<80
ρ DC (Ωm)	>10 ⁵	>10 ⁵	>10 ⁵	>10 ⁵	>1 0 ⁵
T _C (°C)	≥125	≥125	≥150	≥400	≥2 50
30 m i			/ × 10-		
μQ in remanence 10 MHz:					
5 mT			$12 imes 10^3$		
10 mT			$10 imes 10^3$		
μQ in remanence 80 MHz:					
1 mT				$2.5 imes 10^3$	
μQ in remanence 100 MHz				2×10^3	
Decrease in μ Q (%), measured 10 ms after		10	15	30	
application of DC bias (approx.)		10	15	50	
μ_{Δ} with DC bias field (approx.):					
0 A/m		600	130		
250 A/m		120	80		
500 A/m		50	40		
1 000 A/m		22	22		
2000 A/m		8	12		
3 000 A/m		5.5	8		
Frequency range (with or without DC bias) in MHz		up to 2	2 to 10	20 to 100	
Application a rea and special features	kicker magnets;high resistance	high frequency ratio possible with DC bias	fast recovery aftermagnetic bias material		high (B _s + B _r)

May 29, 2008

"Standard" ferrite cavity at higher f?

- Due to reduced μ_i , the tuning range will become smaller.
- Due to higher losses, the shunt impedance will become smaller, i.e. more power is needed for the same voltage.
- This increased power will not only have to be produced, but also cooled away.
- The table of existing systems confirms that a reasonable upper *f*-limit for "standard" ferrite cavities is around 20 MHz.
- \Box Alternatives? \rightarrow Perpendicular bias!

Some existing ferrite RF systems

Synchrotron	No.of	No.of	Tuning	Acceler-	Max.	Gap	Ind.	Type of	B _{max} in	Bias	Tuning	
	Cavs.	Gaps	Range	ating	df/dt	Capacity	Range	Ferrite	Ferrite	Current	System	
		per		Time						Range	Bandwidth	
		cavity	(MHz)	(S)	(MHz/s)	(pF)	(µH)		(T)	(Amps)	(kHz)	
ISIS	6	2	1.3 - 3.1	0.01	325	2200	6.8 - 1.3	Philips 4M2	0.01	200 - 2300	6	
CERN-PS	11	2	2.8 - 9.6	0.7				Philips 4L2		3100		
CERN-PSB	1/ring	1	3 - 8.4	0.45		80		Philips 4L2		60 - 800	15	
CERN-LEAR now: CERN-A	2 D	1	0.38 - 3.5	0.10		500-3000		Philips 8C12/ Toshiba PE17		0 - 800		
DESY-III	1	2	3.27 - 10.33	3.6						160 - 2000		
SACLAY-MIMAS	2		0.15 - 2.5	0.2	14			TDK C4 SY7		0 - 400		
SACLAY- SATURNE	2		1.7 - 8.3	0.5								
CELSIUS	1		0.4 - 2 1 - 5							1500		
KEK-PS	4	2	6 - 8	0.8	14.5	100	7 - 4	Toshiba M4B23 µ~100	0.007	80 - 400	3	
KEK-BOOSTER	2	2	2.2 - 6	0.025	265	650	8 - 1	Toshiba M4A23 u~150	0.01	250 - 2200	1	
FNL-BOOSTER	18		30.3 - 52.8	0.033	3000			Stackpole and Toshiba		Perp	endicul	ar bias
BROOKHAVEN-	10	4	2.32 - 4.40	0.0					İ			
BROOKHAVEN- BOOSTER	2	4	2.4 - 4.2	0.062		395	115 - 37	Philips 4M2		145 - 900		
GSI-SIS	2	1	0.85 - 5.5					Philips FXC8C12				

May 29, 2008

Perpendicular bias

Smythe 1983:

The Effective Permeability

If we choose one axis (say the x-axis) parallel to the bias field, then the tensor μ_{ij} is diagonal and has only two distinct values. To find them we write:

$$\vec{B} = B_x \hat{i} + B_y \hat{j} = (H_x \hat{i} + H_y \hat{j}) [1 + \frac{4\pi M_s}{H} f(H)],$$
 (3)

where:

$$H = \sqrt{(H_x^2 + H_y^2)}$$

For the parallel bias $(\hat{H}_{rf} \parallel \hat{H}_{dc})$ case the effective rf permeability is the well known result:

$$\mu_{XX} = 1 + \frac{4\pi M_s}{H} f'(H) = \frac{\partial B}{\partial H} , \qquad (4)$$

while in the perpendicular bias case $(\vec{H}_{rf} \perp \vec{H}_{dc})$ the effective permeability reduces to the surprisingly simple expression:

$$\mu_{yy} = 1 + \frac{4\pi M_s}{H} f(H) = \frac{B}{H} .$$
 (5)

Advantage: always in saturation, i.e. reduced hysteresis loss \rightarrow potentially higher Q

May 29, 2008

Gyromagnetic resonance

resonance at:

typical bias: $10 \dots 200 \text{ kA/m}$

Poirier, PAC 1993:

At fields above the gyromagnetic resonance, this is consistent with the **constant** dependence in saturation given by Smythe.

Perpendicular bias RF systems

■ FNAL Booster (2001)

- 100 kV with 150 kW, 36 … 53 MHz, bias < 1000 A
- □ LAMPFF, later SSCL LEB, 1984 1993
 - 127 kV with 150 kW, 47...60 MHz, Q above 1000
- TRIUMF Kaon Factory Booster (1998)

• 62 kV, 46 ... 62 MHz

"generic" conceptual design:

Concluded from these:

- Systems around 50 MHz with a tuning range of 1.5 can be done.
- For our *f* range (18 ... 40 MHz), things would be simpler rather than more complicated.
- With a switchable gap capacitor it should be possible to make the tuning range in 2 sub-ranges – is this acceptable?

Can 1 octave tuning range be reached?

□ Simplified geometries tried in HFSS, e.g.

Preliminary answer: Octave can be reached, **but:** for bias below 5000 A/m, the *Q* becomes very small!

May 29, 2008

YIG ferrites can be taylored

E.g.:

- Substitution of some Y with Gd (see plot), Vd or Ca reduces the saturation magnetization.
- Substitution of some Fe with In reduces the linewidth.

from L. Michalowsky: "Weichmagnetische Ferrite", expert verlag, Renningen, 2006 PS2 Internal Review - E. Jensen: "RF Hardware" 16

Preliminary HFSS results:

Parallel plus perpendicular biasing?

- Smythe suggested in 1983 to use
 - transverse bias to get into saturation (lower losses)
 - add'l. parallel bias for tuning (less bias).
- Could this work? (I'd like to try!)

Next steps

Characterize YIG ferrite samples with different saturation and line width under different bias conditions in our *f*-range. (This requires a dedicated test set-up).

This will allow to advance a cavity design.

My guess today: If the split *f*-range is possible, 40 kV, 50 kW units should be possible; this would require around 40 systems for the 1.5 MV requirement.