PS2 review

Negative Momentum Compaction lattice options for PS2

Y. Papaphilippou

May 29th, 2008

Contributors

J. Barranco, W. Bartmann, M. Benedikt, C. Carli (CERN), D. Trbojevic (BNL)

Acknowledgements

G. Arduini, R. deMaria, R. Garoby, B. Goddard, S. Hancock, J. Jowett, E. Metral, D. Möhl (CERN), Y. Senichev (FZ Jülich)

- Negative (Flexible) Momentum Compaction modules
 - ☐ Design principle
 - Example: J-PARC main ring
 - □ NMC rings
 - With dispersion suppressor
 - Resonant
 - Hybrid
 - ☐ Tunability and optics' parameter space scan
 - ☐ Chromaticity correction
 - ☐ Dynamic aperture
- Comparison and perspectives

Negative Momentum Compaction modules

- Avoid transition crossing (beam instabilities and losses)
- Aim at negative momentum compaction

$$a_c = \frac{1}{C} \oint \frac{D(s)}{\rho} ds < 0$$

- Modulate dispersion using cells with different bending power
- Normalized coordinates

$$\chi = \frac{D_x}{\sqrt{\beta_x}} \quad \text{and} \quad \xi = D_x \sqrt{\beta_x} + \frac{\alpha_x D_x}{\sqrt{\beta_x}}$$

- Dispersion vector (χ, ξ) is invariant outside bends, i.e. vary it with bends in areas of negative dispersion to get NMC₃
- Similar approach used for J-PARC high energy ring lattices
- Main difficulty for PS2: extremely low $\gamma_t \approx 10i$ (high dispersion) in limited space

D. Trbojevic et. all, EPAC 90.

J-Parc Main Ring

- 1567.5m long ring with triangular shape with three 406.4m long arcs and 116.1m long straight sections
- Optics design criteria
 - ☐ 3 super-periods (arc + long straight for injection/collimation, extraction and RF)
 - Reasonable tuning range for tunes, chromaticity and aim at negative momentum compaction factor (imaginary **γ**_t)

Parameter	J-PARC	PS2	
Circumference [m]	1567.5	1346.4	
Injection energy [GeV]	3	4	
Extraction energy [GeV]	50	50	
Particles/pulse [10 ¹³]	33	3.2 - 13	
Repetition rate [Hz]	0.3	0.21 - 0.42	

J-PARC Main Ring lattice

- Arc with eight **50m**-modules
 - ☐ **32** dipoles (5.85m), 4 families of **57** quadrupoles (1.26-1.86m)
 - □ Module of 3 DOFO cells with central half-cells without bend, with **γ**_t of **31.6i**
 - \square Reasonable β and η maxima (35m, 3m)
 - \square Horizontal and vertical phase advance of $3\pi/2$, giving a total of 12π (zero dispersion)
 - □ Vertical phase advance tunable down to 200°
- Long straight with 3 central DOFOs and doublet matching in either side
 - \square 7 families of **15** quadrupoles (0.9-1.76m)
 - ☐ FODO cells used for adjusting phase advance (collimation) long half-cell for injection, beam dump and fast extraction, short half-cellfor slow extraction (electrostatic septum)

The "short" NMC module

- 1 DOFO cell with 3 + 3 bends and a low-beta doublet
- \mathbf{v}_t of $\mathbf{8.1i}$
- Phase advances of **306**° and **288**° per module
- Four families of quads, with max. strength of 0.1m⁻²
- Max. beta of 44 and 53m
- Min. dispersion of -4m
 and maximum of 8m
- Chromaticities of -1.3,-2.1
- Total length of 68.25m
- Magnet-to-magnet drift space requirements satisfied

■ Phase advance tunable between 240° and 420° in the horizontal and between 250° and 320° in the vertical plane

Transition energy versus horizontal phase advance $D_{x}(m),\,D_{x}$ $\beta_{\kappa}(m), \beta_{\gamma}(m)$ β_x 4.0 58.5 3.5 52.0 20 3.0 45.5 2.5 39.0 10 2.0 32.5 1.5 26.0 1.0 19.5 0.5 -10 13.0 0.0 6.5 -0.5 -20 10. 20. *30*. *50*. 60. 70. imaginary s(m)240 260 280 300 320 340 360 400 420 μ_{x} [°] 58.5 5. 52.0 65.0 20. $\beta_r(m), \beta_r(m)$ 45.5 58.5 15. 39.0 52.0 10. 32.5 45.5 5. 39.0 26.0 32.5 0.0 19.5 26.0 -5. 13.0 -3. 19.5 6.5 -10. 13.0 -15. 6.5 70. 10. 20. 30. 50. 60. s(m)20. 40. 50. 10. 60. 70.

s(m)

Dispersion versus transition energy

- Almost linear dependence of momentum compaction with dispersion max values
- Higher dispersion variation for γ_t closer to 0
- Smaller dispersion variation for higher γ_t
 29/05/08
 NMC lattice options for PS2

Transition energy versus chromaticity

- Higher in absolute horizontal chromaticities for smaller transition energies
- Vertical chromaticities between -1.8 and -2 (depending on vertical phase advance)
- Main challenge: design of dispersion suppressor and matching to straights

 NMC lattice options for PS2

Dispersion suppressor and matching cell

- Similar half module as for the NMC with 3+2 dipoles for suppressing dispersion and matching cell with 1+2 dipoles
- Using 5 families of quads with strengths within the imposed limits (sharing two half quads with the straight section and arc module)
- Maximum beta of 53 and 60m
- Total length of 53.75m

Arc and long straight section

 $\beta_{\kappa}(m), \beta_{\nu}(m)$

- Arc composed of six NMC modules and two dispersion suppressors with matching cells
- Total length of 517m

- Straight section with 7 FODO cells with horizontal phase advance of
 85.25° and vertical of 74°
- Straight section drift of 9m
- Only two families of quadrupoles are used
- Extra two families can be added for internal phase adjustments
- Total length of 156.2m

- \blacksquare γ_t of 10.9i
- Tunes of **16.75** and **14.2**
- **176** dipoles, **3.4m** long (**1.8T** field)
- 134 quadrupoles in 11(+ 2) families of 6 types (lengths and apertures), with max. strength of 0.1m⁻²
- Max. beta of 60m in horizontal and 57m in the vertical plane
- Dispersion min. of -4m and max. of 8.8m
- Chromaticities of -24 and -32
- Total length of 1346.4m

The NMC with dispersion suppressor ring I

The resonant NMC module

e.g. Y. Senichev BEAM'07

- 1 symmetric FODO cell with 3 + 3 bends and a low-beta doublet
 - □ Phase advances of 315°,270° per module
 - 8 x 315°->7 x 2π
 - 8 x 270°->6 x 2π
 - \square γ_t of 5.7i!!!
 - □ **Four** families of quads, with max. strength of 0.1m⁻²
 - ☐ Max. beta of around 59m in both planes
 - ☐ Min. and max. dispersion of -8.5m and 8.9m
 - □ Chromaticities of -1.5,-1.7
 - ☐ Length of 1.2m between QF and D
 - ☐ Total length of 64.8m

Suppressing dispersion

- \blacksquare Dispersion is suppressed by fixing horizontal phase advance to multiple of 2π
- Solution with **odd** number of 2π multiples preferable for getting **lower imaginary** \mathbf{Y}_t

The "resonant" NMC arc

- 8 NMC modules
- Total horizontal phase advance multiple of 2π
- Maximum β of 59m
- Total length of **518m**

 Adding a straight section with 7 FODO cells, using 2 matching quadrupoles

- ☐ Straight drift of 9.4m
- □ Tunes of (16.8,9.8)
- \square γ_t of 10.7i
- □ 8 families of quads, with max. strength of 0.1m⁻²
 - Extra families for phase advance flexibility in the straight

 β_{κ} (m), β_{ν} (m)

- Max beta of around
 60.5m in horizontal and vertical plane
- ☐ Min. and max. dispersion of **-8.5m** and **8.9m**
- □ Chromaticities of -21.7, -19.8
- ☐ Total length of 1346.4m

The "resonant" NMC ring II

Yet...another NMC arc module

- 1 symmetric FODO cell with 3 + 3 bends and a low-beta doublet
 - □ Phase advances of 294°,310° per module
 - \square γ_t of 10.2i
 - □ 4 families of quads, with max. strength of 0.1m⁻²
 - ☐ Max. beta of 49m and 57m
 - ☐ Min. dispersion of 2.9m and maximum of **7.5m**

Arc and straight section

 $\beta_x(m), \beta_y(m)$

- Dispersion suppression with 2 extra quad families in the last arc modules
- Last arc quad. shared between arc and straight

 Straight section with horizontal phase advance of 87.5°

s(m)

- Straight section drift of 10.2m
- Only two families of quadrupoles are used
- Extra two families can be added for extra internal phase adjustments
- Perfectly matched to the arc

- Three types of 8 (+2)quadrupole families (max. strength of 0.1m⁻²) for a length of 1346.4m
- \square γ_t of 11i
- ☐ Tunes matched to (14.8, 15.2)
- \square Max. β 's of around 60m both planes
- ☐ Dispersion of -9m and maximum of 12m
- ☐ Tunability between 14 and 16 in both planes but penalty on the beta function maxima
- \square Chromaticities of -21.5, -32.229/05/08

The "hybrid" NMC ring III

 $\beta_c(m), \beta_c(m)$

High filling factor NMC

- ☐ High filling factor module with additional dipoles in between the low beta doublets
- ∇ \mathbf{Y}_{t} of **8.66i** for the module and **11.6i** for the ring
- ☐ Max. horizontal beta of 53m and vertical of 46m
- ☐ Min. dispersion of **-4.3** and maximum of **3.3** m
- ☐ Maximum quadrupole gradient of 0.11m⁻²
- □ Total length of 75.9 m
- ☐ Chromaticities of -20.2 and -17.4

Main disadvantage is the long arc: only 6 cells available for long straight sections

"Short" NMC module with high imaginary γ_t

- Raising the γ_t to 15.3i
 by decreasing the phase advances per module to 280° and 275° (from 306° and 288°)
 More beta of 44 and
- Max. beta of 44 and53m (as before)
- Min. dispersion of
 -1.5m (from -4m) and max. of 5.7m (from 8m)
- Chromaticities of -1.1 and -2 from (-1.3 and -2.1)
- Total length of **67.25m** (from 68.25)

Dispersion suppressor and matching cell

- Similar half module as for the NMC with 3+2 dipoles for suppressing dispersion and matching cell with 1+1+2 dipoles (from 1+2)
- Using 6 (instead of 5)
 for better matching
- Maximum beta of 50 and 54m (from 53 and 60m)
- Total length of 56.7m (from 53.8m)

 $\beta_x(m), \beta_y(m)$

- Arc composed of six NMC modules and two dispersion suppressors with matching cells
- Total length of 517m (as before)

 $D(m), D_{x}$

- Straight section with 7 FODO cells with horizontal phase advance of
 84.35° and vertical of 71.7°
- Straight section drift of 9m (as before)
- Total length of 156.3m

- Tunes of 15.75 and 13.75
- 180 dipoles, 3.3m long
- 134 quadrupoles in 12 (+ 2) families of 5 types with max. strength of 0.1m⁻²
- Max. beta of 51m in horizontal and 54m in the vertical plane
- Dispersion min. of -1.5m and max. of 5.7m
- Chromaticities of -21 and -31
- Total length of 1346.4m

The NMC with dispersion suppressor ring Ib

Chromaticity correction

- Same approach for all three lattice types
- Sextupoles of 0.4m long placed in the low beta doublet
- In principle 2 families needed for chromaticity correction
- Second-order chromaticity and offmomentum β-beating not corrected

100.

90.

80.

70.

60.

50.

40.

30.

20.

 $3_k(m), \beta_k(m)$

Chromaticity correction

■ Using 8 sextupole families to minimize 2nd order chromaticity and off-momentum beta variation in both planes

Dynamic aperture (preliminary)

- On momentum tracking using SIXTRACK for the hybrid lattice
- Only non-linearity included: chromaticity sextupoles
- Large vertical and slightly smaller horizontal DA
- Tune optimization necessary

Comparison

Parameters	NMC with DS RING Ia	NMC with DS RING Ib	NMC resonant RING II	NMC hybrid RING III
Transition energy	10.9i	19.8i	10.7i	11i
Number of dipoles	176	180	192	168
Dipole length [m]	3.4	3.3	3.1	3.5
Arc module length [m]	68.3	67.3	64.8	71.2
Number of arc modules	6+2	6+2	8	7
Arc length [m]	517	517	518	500
Straight section drift length [m]	9	9	9.4	10.2
Quadrupole families	11	12	6	8
Arc phase advance [2π]	6.7/5.7	6.2/5.5	7/6	5.7/6.1
Max. beta functions [m]	60/57	51/54	61/61	60/60
Max. dispersion function [m]	8.8	5.7	8.9	12
Tunes	16.75/14.2	15.75/13.75	16.8/9.8	14.8/15.2
Chromaticity	-24.1/-32.1	-20.6/-30.9	-21.7/-19.8	-21.6/-32.2

Conclusions

- Thorough optics design of several NMC modules with low imaginary transition energy
 - □ NMC with dispersion suppressor is my **preferred** solution
 - □ NMC hybrid ring a good **alternative**
 - □ NMC resonant ring has limited tunability
- Relaxing the transition energy constraint (to around **20i**) is an advantage:
 - □ Reduces the optics functions maxima (less chromaticity, more aperture)
 - Leaves margin for tuning and operational flexibility
 - □ For example, the J-PARC high energy ring lattice is tuned for a transition energy of **30i**
- Lattice choice based on detailed comparison of performance with respect to beam losses
 - □ Collimation system, non-linear dynamics, collective effects