

ALICE luminosity range and trims

J. Wenninger

Luminosity versus separation

- □ Luminosity in ALICE versus total separation of the 2 beams, 6.5 TeV.
 - ο Parameters: N=1.2×10¹¹ p, ε = 2 μm, β * = 10 m \Rightarrow σ = 54 μm

ALICE offset levelling

Margins

- Uith σ ~ 50 μm the 2 σ margin between the target and the dump luminosity corresponds to a movement of 1 σ for each beam.
 - Trims are always symmetric (+ most pessimistic for protection).
 - \circ A trim of 50 μ m / beam brings us to the limit !!
- Those numbers are based on Gaussian profiles, and we know that 'out there' the tails are overpopulated.
 - o In practice the margin smaller !!
- □ The game is complicated further by the fact that as the lumi decays during a fill, we must move the beams closer (and not dump!).

Look back at 2012 settings

- □ Evolution of the luminosity knob settings in 2012, σ ~ 40 mm, β * 3 m.
 - In some periods L was leveled (H plane!).
 - Target L was not always the same.

In both plots → B1 trims
B2 trim = - B1 trim

A 50 μ m trim...

- A 50 μ m trim of the lumi-scan knobs at β * 10 m corresponds to:
 - Max orbit excursion ~ 0.12 mm. 2012 interlock at ± 0.6 mm

Max deflection ~6 μrad

2012 interlock at \pm 15 μ rad

Interlock settings (1)

- The fill-2-fill fluctuations of the orbit corrector settings (OFB corrections) require a margin of ~6-10 μrad.
 - \circ \rightarrow defines the ~±15 μ rad corrector margins used in 2012.
 - Margin depends in practice on the location in the ring, more stable in non-squeezed and arc regions → could be good for ALICE.
- With an interlock set to 12 µrad one can protect against L values larger than $\sim 10^{32}$ cm⁻²s⁻¹.
 - Maybe a bit high, but better than nothing for L scan knobs.
 - With some (good) experience one could possibly tighten...
 - Cannot protect against all global orbit corrections.
 - Cannot protect against features appearing on the orbit when going into collision as pattern of corrector changes may not hit the limit.
- Going into collision could be 'protected' by applying a large initial offset (to 6-8 sigma) and then moving back gently until some L found.
 - Will cost ALICE some time in a fill.

Interlock settings (2)

- Once the typical range is know, one can also set limits within LSA on the trim range of the lumi scan knobs.
 - But this is a soft protection.
 - This will also prevent VdM scans and special fills etc → expert intervention is required before and after!
 - I do not really recommended this.
- Once the leveling has started on a given fill it is of course possible to set a limit on trims.
 - Does not cover going into collisions.

Summary

- Some protection possible (but not for all cases) with limits on the leveling, large offsets when colliding at the start of the fill and interlocks on correctors.
- An interlock on the BCMs should nevertheless be in place to cover more thoroughly the phase space.