DESY

- from a laser scientist's perspective

Bernd Steffen LA³NET Workshop: Scientists go Industry Berlin, Nov. 2014

- Learned precision mechanics in Marburg
- Studied physics in Kiel and Würzburg
- Diploma thesis (experiments at Uni HH, supervisor at DESY, handed in at Uni Würzburg

Determination of the critical magnetic fields of surface and temperature treated niobium by AC susceptibility measurements

> 2007 PhD at DESY

Electro-optic methods for longitudinal bunch diagnostics at FLASH

- Post-Doc at PSI, Switzerland
- Since 2010 at DESY
 - planning, building, and soon commissioning longitudinal diagnostics for the European XFEL
 - short pulse project at FLASH

Outline

- > DESY Academia or industry?
 - Site
 - Accelerator lab or laser lab?
 - Employer
- FLASH (as an example Free-Electron Laser)
- Lasers at accelerators
 - Optical synchronization system for FLASH and XFEL
 - Electro-optical bunch length measurement for E-XFEL
 - Short pulse photo-injector laser at FLASH
 - ANGUS 200 TW laser system for laser-plasma acceleration

Deutsches Elektronen-Synchrotron

- National research center of the Helmholtz Association on accelerators, photon science and particle physics
- Located in Hamburg and Zeuthen (Brandenburg)
- Budget: 230 million euro (Hamburg: 210 million; Zeuthen: 20 million) Financing: 90% national; 10% Hamburg and Brandenburg
- Employees: approximately 2300, including 650 scientists working in the fields of accelerator operation, research and development
- Additionally more than 3000 guest scientists from over 40 countries each year
- Currently about six running accelerators (plus pre-acc.) for photon science, research and education
- By now lots of lasers..

Lasers at DESY

- > 2003 (the laser labs I know of):
 - Laser wire experiment at PETRA (about 5 scientists, PhDs, postdocs)
 - TTF (now FLASH) injector laser (about 5)
 - Electro-optical bunch detection at TTF (4)
 - Some lasers for spectroscopy at HASYLAB
 - Pump-probe lasers at TTF (in preparation)
 - Hamburg University institute of laser physics about to move to DESY site

> 2005 - 2014

Additional laser (class 3 and 4) announced to the local authorities:

Institutions and outstations on the DESY site

- > Center for Free-Electron Laser Science
- Centre for Structural Systems Biology
- European Molecular Biology Laboratory
- University of Hamburg (at DESY site: Institute for Experimental Physics, Institute of Laser Physics, II. Institute for Theoretical Physics (elementary particle physics), Center for Optical Quantum Technologies)
- Helmholtz-Zentrum Geesthacht (material science)
- > NanoLab

DESY as an employer – a personal view

- Benefits and disadvantages of public service
- > Broad variety of research fields
- Personal (research) interests can be followed
- Experts on a lot of different fields of science on site
- Collaboration with other groups/institutions in and outside of DESY is well supported
- > Very international and open-minded science community

FLASH – Free electron LASer at Hamburg

Outline

- > DESY Academia or industry?
 - Site
 - Accelerator lab or laser lab?
 - Employer
- FLASH (as an example Free-Electron Laser)

Lasers at accelerators

- Optical synchronization system for FLASH and XFEL
- Electro-optical bunch length measurement for E-XFEL
- Short pulse photo-injector laser at FLASH
- ANGUS 200 TW laser system for laser-plasma acceleration

Laser based synchronization system for FLASH and XFEL

FLASH accelerator facility & laser-based synchronisation system

Courtesy: M.K. Czwalinna A synchronization system based on the distribution laser pulses via length stabilized fiber links repetition rate: 216MHz wavelength: 1550nm

LbSyn: Laser to Laser locking

- > Balanced optical cross-correlator for pulses of different wavelength and duration
- Last resort of breadboard usage, new design in preparation
 - Standardized design and robust operation for all wavelengths
 - Mounting options for different crystals
 - Space usage reduced to 25cm x 55cm, plus electronics

Electro-optical bunch length detection – Principle

Sampling with laser pulse:

 \rightarrow Sample electron bunch with many laser pulses

Chirped laser pulse:

t

 \rightarrow Defined relation between time and frequency

Bernd Steffen | Berlin | Nov. 18th 2014 | Page 12

Electro-optical bunch length detection – setup

EOD signal at FLASH from an experimental setup (2004) with a Ti:Sa laser

GaP d = 175 μ m λ = 800 nm θ = 2° T₀ = 15 fs T_c = 3.6 ps

EOD Beamline Unit

EOD Beamline unit developed from DESY and PSI

Bernd Steffen | Berlin | Nov. 18th 2014 | Page 14

EOD Laser

- > Optimized laser for electro-optical bunch length measurement at XFEL
- Mode locked Yb fiber laser developed at PSI and assembled at DESY
- > Specifications:
 - Wavelength: 1030nm
 - Bandwidth: 25-50nm (amplified: 100nm)
 - Pulse length: 5ps (compressible to <100fs)
- Pulse energy: 1-2nJ (amplified: 100nJ)
- Repetition rate: 54MHz (amplified: 1MHz / 4.5MHz)
- Temperature stabilized to 0.1°C

MTCA.4 based laser synchronization

More information on MTCA.4: http://mtca.desy.de

RF Generation and Detection

DRTM-DWC10 (DESY in-house development)

- > RF generation Box (19") to generate sinusoidal RF signals from laser pulses
- > 10 channel high-frequency down-conversion from 1GHz 4GHz
- > Merge 19" RF box and down-converter board to a single RTM unit

Digitizing and Signal Processing

SIS8300-L (struck innovative system)

- 10 channel, 16 bit digitizer (AC or > DC coupled) – low noise design
- 10 MS/s to 125 MS/s >
- Virtex 6 FPGA >
- Two 16bit DACs >

MTCA.4 4-Channel Piezo Driver

DRTM-PZT4 (DESY in-house development)

- > 4 power amplifier with 0-100V, -85V/+85V
- DAC outputs +/-5V, +/-10V, 0/5V, 0/10V
- Each power amplifier can drive up to 10uF capacitance.
- > Applications:
 - Cavity fine tuning
 - Laser to RF synchronization
 - Link Stabilization

Block diagram of Signal Processing

- > PI: PI controller
- PCIe: Peripheral Component Interconnect express
- MGT: Multi-gigabit transceiver
- > LLL: Low Latency Link
- SPI: Serial Peripheral Interface

Phase Noise and Baseband Noise

Phase Noise and Baseband Measurement

Short pulse photo-injector laser at FLASH

 λ (nm)

	Typ. FLASH parameters	Single spike operation at FLASH	Single spike operation at FLASH
Injector laser pulse duration (FWHM)	15.3 ps	15.3 ps	1-3 ps
Bunch charge	0.08 - 1 nC	20 pC	20 pC
Bunch duration (rms)	30 - 200 fs	3 fs	3 fs
compression	220 - 32.5	2200	140-430
FEL pulse duration (FWHM)	30 - 200 fs	3 fs	3 fs

- > Advantages of low charge operation:
 - Less sensitive to collective effects (space charge, CSR, etc.)
 - Shorter bunches, reduction of RF curvature
 - Less variation of beam parameters along the bunch

The short pulse laser system

Amplified Laser System:

- Seed laser Origami 10 (OneFive)
 - 1030nm, 260mW, 54MHz, 400fs
- 2 stage Yb:YAG amplifier (Amphos)
 - 1030nm, 10W, 1MHz, 800fs (10µJ)
- AOM pulse picker (1MHz to 10Hz trains)
- LBO/BBO forth harmonic stage
 - 1030nm -> 257.5nm
 - (10% efficiency @ 10µJ) -> 1µJ
- Stretcher to increase pulse length

The short pulse laser system

First SASE with short pulse injector laser:

- 9th & 11th of January 2013
- 5 µJ at 13.5 nm, bunch charge 35 pC

25 μJ at 13 nm, charge 80 pC Narrow bandwidth (0.34 % in linear regime, 0.42% at saturation)

 Radiation pulse duration at full undulator length is estimated as 50 fs.

electron beam: 40 fs.

Measurement: May 2014

Bunch charge: 55 pC

laser pulse duration: 1 ps rms

Analysis of single FEL pulse spectrum:

- $\lambda = 6.98$ nm
- in average: 1.5 spikes within the FWHM
- -> rms FEL pulse duration > 10 fs

Measurement: September 2014

- after switching to Laser3 and adjusting its phase to Laser2 immediately transmission and some SASE were achieved without any tuning
- 13 µJ at 45 pC
- e-bunch duration: 40 fs FWHM
- spectrometer measurement:
 1.8 peaks,
 1.6 within the FWHM,
 10.7 fs (FWHM)
- first (friendly) users served...

FLASH photon energy distribution (via DAQ)

ANGUS - 200 TW laser system for laser-plasma acceleration

- > ANGUS 200 TW laser system for laser-plasma acceleration
- > 5 J in 25 fs, 5 Hz rep-rate
- > owned jointly by Hamburg University and DESY
- operated by LUX Junior Research Group of A. R. Maier (lux.cfel.de) within the LAOLA collaboration of Hamburg University and DESY

Courtesy: A.R. Maier

- > goals:
 - availability & stability;
 - Integration into accelerator controls system

DESY – academia, service provider and (a bit) industry, accelerator lab and laser lab

> Changing from high energy physics to photon science

> Growing demand of research with laser and on laser

>Thank you for your attention!

