CERN: from particle physics to medical applications

Manjit Dosanjh Knowledge Transfer- Life Sciences

X-Rays, the fastest technology transfer

- November 8, 1895 Röntgen discovered X-Rays
- December 22, 1895 he takes the first image of his wife's hand

Röntgen received the first Nobel prize in physics in 1901

Beginning of modern medical physics

.....beginning of medical physics

Henri Becquerel

1896: Discovery of natural radioactivity

1898: Discovery of radium

used immediately for "Brachytherapy"

First radiobiology experiment: Pierre Curie

The first radiobiology experiment. Pierre Curie using a radium tube to produce radiation ulcer on his arm. Hall fig. 1-2

Magnetic Resonance Imaging

Manjit Dosanjh, Teachers, 23 July 2014

The Mission of CERN

CERN

uniting people

Research

Push forward the frontiers of knowledge

E.g. the secrets of the Big Big within the first moments of the

□ Develop new teel accelerators ar

Information technology - the Web sed the ARID Medicine - diagnosis and therapy

Train scientists and engineers of tomorrow

Unite people from different countries and cultures
Manjit Dosanjh, Teachers, 23 July 2014

Brain Metabolism in Alzheimer's Disease: PET Scan

2

ke matter like

Normal Smin

Alehahmaria Risassa

3 pillars of the trade

Brain behind the web

The 4th pillar of technology

Cancer - a growing challenge

More than 3 million new cancer cases in Europe each year and 1.75 million associated deaths

Increase by 2030: 75% in developed countries and 90% in developing countries

CERN Technologies and innovation accelerators, detectors and IT to fight cancer

Medical Imaging

First step: Detection

No treatment without detection!

(ClearPEM)

Particle Detection

Imaging

PET Scanner

Brain Metabolism in Alzheimer's **Disease: PET Scan**

Normal Brain

Alzheimer's Disease

Similar challenges for detectors

Similar challenges

- New materials
- Compact
- low noise electronics
- Algorithms

PET Imaging

CMS calorimeter Desgnjh, Teachers, 23 July 2014

PET - How it works

http://www.nymus3d.nl/portfolio/animation/55

PET - How it works

PET: detection

Photon (511 keV)

PET Scan

Brain Metabolism in Alzheimer's Disease: PET Scan

Normai Brain

Alzheimer's Disease

Crystal Clear Collaboration

- New scintillating materials
 - LuAP, phoswich LuAP-LSO (CERN patent)
 - Other crystals
- New photodetectors (Avalanche PhotoDiodes)
- New low noise electronics
- New intelligent DAQ systems with pipeline and parallel architectures
- better simulation
 GEANT 4
- better reconstruction algorithms

CRYSTAL CLEAR Collaboration (PEM)

- PET dedicated to breast cancer screening
 - Extremely sensitive to small tumour masses
- Spatial resolution (1-2mm)
- High counting sensitivity
- Short PET exam
- Coupled to ultrasound

MEDIPIX

- High Energy Physics original development:
 - Particle track detectors
- Allows counting of single photons in contrast to traditional charge integrating devices like film or CCD
- Main properties:
 - Fully digital device
 - Very high space resolution
 - Very fast photon counting
 - Good conversion efficiency of low energy X-rays

What is Medipix?

- an electronic chip similar to the electronic imaging chip in a digital camera
 - sensitive to x-rays instead of visible light.
- it can create the first true colour images with x-rays.
 - it permits us to move from black and white x-ray images to full colour x-ray images.
- can be read out very rapidly.
 - allows the use of the chip for colour x-ray digital movies or for fast colour x-ray CT scans

A changing tide: digital imaging

Current

- Limited contrast
- High dose
 - Restricted screening
 - Limited access to preventive health care

Digital

- High contrast
- Lower dose
 - Opportunity for screening
 - Access to preventive health care

Towards digital imaging

Towards multimodality imaging (PET-CT - David Townsend)

Multimodality imaging: CT with PET

morphology metabolism

Accelerators for cancer treatment

Use of Accelerators Today

Cancer - a growing societal challenge!

Over 3 million cancer cases in Europe each year

'Conventional' radiotherapy: linear accelerators dominate

Courtesy of Elekta

20 000 patients per year every 10 million inhabitants

1 linac every <250,000 inhabitants anjh, Teachers, 23 July 2014

Radiotherapy in the 21st century

3 "Cs" of Radiation

Cure (~ 45% cancer cases are cured) Conservative (non-invasive, few side effects) Cheap (~ 5% of total cost of cancer on radiation)

There is no substitute for RT in the near future The rate of patients treated with RT is increasing

Present Limitation of RT:

~30% of patients treatment fails locally

(J.P.Gérard)

Two opposite photon beams

Two opposite photon beams

How to decrease failure rate?

- Accelerator technologies to improve treatment: higher dose
- Detectors/imaging: accuracy, multimodality, real-time, organ motion
- Biology: fractionation, radio-resistance, radiosensitization
- Data: storage, analysis and sharing
- Collaboration in this multidisciplinary field is key

Raymond Miralbell, HUG

Hadrontherapy: all started in 1946

- In 1946 Robert Wilson:
 - Protons can be used clinically
 - Accelerators are available
 - Maximum radiation dose can be placed into the tumour
 - Particle therapy provides sparing of normal tissues

- Tumours near critical organs
 - Tumours in children
 - Radio-resistant tumours

E. O. Lawrence is awarded Nobel Prize in 1939 for inventing the cyclotron

Hadron Therapy

• 1946: Robert Wilson Protons can be used clinically

U^

C

Robert Wilson

Why hadron therapy

Tumours near critical organs Tumours in children Radio-resistant tumours

Photons vs. Hadrons

Carbon ions: pilot project in Europe

- GSI Darmstadt (1997 2008)
- G. Kraft (GSI) & J. Debus (Heidelberg)
 - 450 patients treated with carbon ions

HIT - Heidelberg

Manjit Dosanjh, Teachers, 23 July 2014

111

Real time monitoring

measured

On-line determination of the dose delivered First time in 110 years!

Modelling of beta⁺ emitters:

Cross section

Fragmentation cross section

Prompt photon imaging

Advance Monte Carlo codes

11333

In-beam-PEGSI- Darmstadt

PIMMS at CERN (1996-2000)

Proton Ion Medical Machine Study

CNAO - Italy (Pavia)

Hadrontherapy Timeline

2014

 \bigcirc

Hadrontherapy Timeline

ISOLDE isotopes for detection & treatment

Computing for medical applications

www and grid

- WWW: sharing information
- GRID: sharing computing power

The Grid

Mammogrid - a grid mammography database

From: David MANSET, CEO MAAT France, www.mact-g.com

Simulation

Simulation

ENV SION

European NoVel Imaging Systems for ION therapy

https://cds.cern.ch/record/1611721

References

- cern.ch/crystalclear
- cern.ch/enlight
- cern.ch/medipix
- cern.ch/twiki/bin/view/AXIALPET
- cern.ch/medaustron
- cern.ch/fluka/heart/rh.html
- www.fluka.org/fluka.php
- cern.ch/wwwasd/geant
- cern.ch/wwwasd/geant/tutorial/tutstart.html