

Introduction to particle physics

CERN High School Teachers 2014

t С е U μ b V_e Vu d S V_T leptons

quarks

Particle Physics 8/7

CERN High School Teachers 2014

And ... antimatter

Classical equation of motion: Linear.

$$E = 0.5mv^2$$

Einstein's equation of motion: Quadratic.

$$E^2 = p^2 c^2 + m^2 c^4$$

Interpretation: every fermion has an antimatter version. Same mass, opposite charge eg. antiquark \bar{q} , antimuon μ^+ , antineutrino $\bar{\nu}$

Antimatter 14/7

Matter is held together by forces;

mediated by force carrying particles (bosons; spin 1)

CERN High School Teachers 2014

Matter is held together by forces;

mediated by force carrying particles (bosons; spin 1)

CERN High School Teachers 2014

Aside: Feynman diagrams

CERN High School Teachers 2014

Force Strengths:

Quantified by "coupling constants" $\boldsymbol{\alpha}$

CERN High School Teachers 2014

Force Strengths:

Quantified by "coupling constants"

Strong: $\alpha_{\rm s} \sim 1$ Electromagnetic: $\alpha_{\rm em} \sim 1/137$ Weak: $\alpha_{\rm W} \sim 10^{-6}$ Gravity: $\alpha_{\rm g} \sim 10^{-40}$

(note: low energy/large distance scale values. Coupling strength changes with energy)

Standard Model

Matter Forces Higgs

CERN High School Teachers 2014

Similarities, differences:

EM force	Weak force	Strong force
Electric charge (1)	Weak charge (2)	Colour charge (3)
Massless photon	Massive W [±] ,Z	8 massless gluons
Coupling g	Coupling g _W	Coupling g _s

Value unknown/ not predicted

CERN High School Teachers 2014

Similarities, differences:

Introduce Higgs field:

Complex doublet (1d case shown here to get idea)

Potential energy V(ϕ) = -0.5 $\mu^2 |\phi|^2 + \lambda |\phi|^4$

Higgs

Introduce Higgs field :

Couples to particles to give mass (amount ~ coupling strength)

Complex doublet has 4 free parameters

3 absorbed into W+, W-, Z boson mass

W+, W-, Z, γ mixtures of original weak, em massless bosons.

1 manifested as a massive Higgs boson (m_H)

(note: Higgs field gives mass to fermions by a different mechanism)

Higgs

Introduce Higgs field :

After symmetry breaking, Higgs sector properties are:

- spinless Higgs boson (m_H)
- vacuum expectation value (mean field value) (v)

Consequences:

Weak and electromagnetic forces connected **Massive** Z is mixture of massless em + weak bosons Mw, Mz and weak, em couplings related: $\tan \theta_W = g_W / g$ $M_W = M_Z \cos \theta_W$

EM force	Weak force	Strong force
Electric charge (1)	Weak charge (2)	Colour charge (3)
Massless photon	Massive W [±] ,Z	8 massless gluons
Coupling g	Coupling g _W	Coupling g _s

Value unknown/ not predicted

CERN High School Teachers 2014

EM force

Abelian

Only charged particles couple

Weak force

Non-abelian

Only left handed particles couple

quark mixing (3 generations, CP)

Neutrino mixing (3 generations, CP)

Strong force

Non-abelian

Only quarks couple

CERN High School Teachers 2014

EM force

Abelian

Only charged particles couple

Weak force

Non-abelian

Only left handed particles couple

quark mixing (3 generations, CP)

Neutrino mixing (3 generations, CP)

Strong force

Running couplings

Non-abelian

Only quarks couple

CERN High School Teachers 2014

Running couplings

Parallel plate capacitor Dielectric reduces apparent charge on plates (polarisation) **Screening** of charge.

Charge screened by vacuum polarisation;

High E \Rightarrow smaller distances \Rightarrow see more charge

EM force strength increases with E

CERN High School Teachers 2014

QCD, Weak force

Charge screened by **vacuum polarisation**;

High E \Rightarrow smaller distances \Rightarrow see more charge

Force strength increases with E

Non-abelian forces (weak, strong) also include these "extra" charge loops

Higher E =>smaller distances => see less charge

Net effect: force strength decreases with E

CERN High School Teachers 2014

Note: 1/force strength plotted.

1/em falls with E.1/weak rises with E.1/strong rises with E.

Implications: QCD

Force grows with distance. **Confinement**

- No free quarks
- Colourless hadrons
 - Baryons (3 q)
 - Mesons (q anti-q)
 - Tetraquarks? (2q 2anti-q)
 - ?

Hadronisation

– jets

EM force

Abelian

Only charged particles couple

Weak force

Non-abelian

Only left handed particles couple

quark mixing (3 generations, CP)

Neutrino mixing (3 generations, CP)

Strong force

Non-abelian

Only quarks couple

CERN High School Teachers 2014

Standard Model fixed up to include experimental observations.

=> Better predictive power.

Very successful.

CERN High School Teachers 2014

How do we know/test this?

Experiment

CERN High School Teachers 2014

1) Source of fundamental particles

Particle accelerator: beams of charged particles, accelerated by em force

(also cosmic rays, neutrinos from nuclear reactors...)

Accelerators 9/7

CERN High School Teachers 2014

2) Record fundamental particles

Particles lose energy travelling through material

- Ionisation
- Radiation
- Interaction

Read out and record particle energy deposits

- Locate
- Reconstruct (px, py, pz, m)
- Identify

Detectors 10/7

CERN High School Teachers 2014

Reconstruct path

Reconstruct momentum Measure energy Identify type

Tracking detectors Charged particles Location: Ionisation (gas) e/hole (silicon)

(px,py,pz,m)

(x,y,z)

CERN High School Teachers 2014

(px,py,pz,m)

Reconstruct path Reconstruct momentum Measure energy

Identify type

Magnetic field Relate track curvature, B to p.

CERN High School Teachers 2014

(px,py,pz,m)

Reconstruct path Reconstruct momentum Measure energy Identify type

Calorimeters

Charged + neutral particles Two types: Electromagnetic Hadronic Absorb + measure energy

Identify particles by characteristic signatures in experiment

Add computers: calculate particle paths and energies

Add theory: infer what fundamental process happened

LHC Physics 16/7

CERN High School Teachers 2014

nice ...

CERN High School Teachers 2014

Unknowns

CERN High School Teachers 2014

(0) is the theory correct ?

CERN High School Teachers 2014

A Higgs? The Higgs?

> 3,000 papers since the start of 2012.....

CERN High School Teachers 2014

(1) anti matter

Big Bang: equal amounts of matter and antimatter created

Now: we (matter) exist

Why?

CERN High School Teachers 2014

4 numbers

Measure of matter / antimatter difference

Measure of quark behaviour under the weak force

CERN High School Teachers 2014

(2) and the other 96% ?

CERN High School Teachers 2014

Standard particles

SUSY particles

Beyond Standard Model 15/7

CERN High School Teachers 2014

The "we did not find SUSY" Plot

Markus Klute

CERN High School Teachers 2014

Tara Shears, University of Liverpool

11

Many questions....

What is mass?

What about gravity?

4 forces?

12 matter particles?

How many dimensions?

where did all the go? Mini black holes?

What about the other 96% of the universe

CERN High School Teachers 2014

2015

watch this space

CERN High School Teachers 2014