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The LHC is a project 
aiming at exploring a 
new energy regime 

The goal is the exploration of small distances  
(< 10-19 m) searching for new phenomena 
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•  The engine that drives us to build accelerators is our 
understanding that the key to physical laws is hidden in 
the microcosm. 
•  The same laws help us to understand the large-scale 
structure of the universe and its early history. 3 
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All particles are described by fields, but Higgs field is special 
Higgs condensate: special arrangement of Higgs 
particles such that, in the “vacuum”, the average 

Higgs field is constant in space-time.   è  spin zero 

At 10-10 seconds after the Big Bang:  
Space crystallized into a new form 

Nature filled space because she saved energy  
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What caused the Bang? 

Gravity is 
always attractive 

One exception in 
General Relativity 
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Extraordinary space expansion sets the 
right initial conditions of the universe 
(uniform, flat, smooth, and expanding) 

Vacuum energy of a scalar field è inflation 
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Horizon 

Region of thermal 
equilibrium 

Inflation 
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Inflation explains the initial conditions of the universe 
 
No bang, but 
•  Uniform and flat because of superluminal 

expansion 
•  Expanding because of initial kick from vacuum 

energy 
•  Low entropy  
•  Hot because, at the end of inflation, vacuum 

energy is released in the form of thermal energy 

A new spin-0 field responsible for inflation? 
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Concept of symmetry central in modern physics 
invariance of physics laws under 

transformation of dynamical variables 

All physical phenomena in the microcosm can be 
understood in terms of a single symmetry principle  

(simply connected) spherically symmetric object 



16 Grand unification: single force è single coupling 

Symmetry is the language of the 
fundamental laws of nature 

Can we go further? 

electro-
magnetism 
 
 
weak force 
 
 
strong force gravity 

space-time fields

gauge symmetry 



Classical physics: force depends on distance 
Quantum physics: charge depends on distance 

charge 

virtual 
particles 

A strange phenomenon 
QED: virtual particles 
screen the charge è 
charge gets weaker as we 
move away 
 
Even stranger 
QCD: virtual particles 
antiscreen the charge è 
charge gets stronger as 
we move away 
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EW force 

The screening (and antiscreening) 
depends on all species of existing 
particles 
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b3=−7, b2=−19/6, b1=41/6 
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Extraordinary extrapolation to MX ~ 1014-16 GeV 
Above MX theory with single coupling (SU5, SO10) 
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Like quarks come in 3 colors, in GUT quarks & 
leptons are different components of the same particle  

Matter is unstable? 

q 

q 

q q 
q 
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nucleon 
meson 

lepton 



20 

Feb 26, 1896: Becquerel studies 
phosphorescence of a uranium salt 

“Invisible	  phosphorescence	  radiation	  
emitted	  with	  a	  persistence	  in5initely	  greater	  
than	  the	  persistence	  of	  luminous	  radiation”	  
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Discovery of many radioactive elements 
(radium, thorium, polonium... + berzelium, carolinium...) 

At a time when the nucleus was not known, the relation 
between radioactive and usual matter was unclear 
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In 1903, Rutherford and Soddy ask the question: 
•  Are all elements radioactive, but some have 

lifetimes too long to be measured? 
•  Radioactivity is due to small impurities of radium 

common in many materials? 

Principle of simplicity: all matter is unstable  
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With the discovery of the nucleus and the 
understanding of its stability properties, it 

became clear that matter is stable 

In 1929 Weyl formulated 
proton stability as 
conservation law 
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In 1948 Wigner talks about p-decay if 
conservation law is violated (p -> e+ γ) 

In 1954 Goldhaber 
says “we feel it in our 
bones that the proton 
lifetime is long”: 
τp>1018 yr	  	  

Experiments by Reines et al.: 
τp>1021 yr;	  then 1026 yr 
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Shocking news from GUT: matter is unstable! 
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GUT:  τ p(p→ e+π 0 ) = MX
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1031−32  yr

Exp:  τ p(p→ e+π 0 )> 8.2×1033  yr
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SPACE DIMENSIONS AND UNIFICATION 
Minkowski recognized special 
relativistic invariance of 
Maxwell’s eqs ⇒ connection 
between unification of forces 
and number of dimensions 

Electric & magnetic forces unified in 4D space time 
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UNIFICATION OF EM & GRAVITY 
Next step: 

⇒ New dimensions? 
1912: Gunnar Nordström proposes gravity 
theory with scalar field coupled to Tµ

µ 

1914: he introduces a 5-dim Aµ to describe both 
EM & gravity  

1919: mathematician Theodor Kaluza writes a 5-
dim theory for EM & gravity. Sends it to Einstein 
who suggests publication 2 years later 

1926: Oskar Klein rediscovers the theory, gives 
a geometrical interpretation and finds charge 
quantization 

In the ‘80s the theory, known as Kaluza-Klein 
becomes popular with supergravity and strings 
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ELECTROMAGNETISM (QED) 
Gauge principle: symmetry determines interactions 

SDirac = d 4xψ iγ µ∂µ −m( )ψ∫
Invariant under global 
 
Under local transformations 

ψ→ eiΛψ
ψ→ eiΛ(x )ψ

∂µψ→ eiΛ(x ) ∂µψ + iψ∂µΛ( )
Action invariant under local gauge transformations 

SQED = d 4x ψ iγ µDµ −m( )ψ − 14 FµνF
µν"

#$
%

&'∫
Dµ = ∂µ − iAµ Fµν = ∂µAν −∂νAµ

Aµ transforms as Aµ → Aµ +∂µΛ
dynamical variable (photon) 
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GRAVITY 

In General Relativity, metric        (4X4 symmetric tensor) 
dynamical variable describing space geometry (graviton) 

€ 

ds2 = gµν dx
µdxν€ 

gµν

Dynamics described by Einstein action 

€ 

SG =
1

16πGN

d4∫ x −g R(g)

•  GN   Newton’s constant 

•  R     curvature (function of the metric) 
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Consider GR in 5-dim 

€ 

ˆ S G =
1

16π ˆ G N
d5∫ x − ˆ g R( ˆ g )

Choose 

€ 

ˆ g MN ( ˆ x ) =
gµν +κ 2φ Aµ Aν κ φ Aµ

κφ Aν φ
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ˆ g MN ⇔ gµν , Aµ, φDynamical fields 

Assume space is M4×S1 

•  First considered as a mathematical trick 

•  It may have physical meaning 

(t,x) 

x5 
R 
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Extra dim is periodic or “compactified” 

€ 

x5 + 2π R = x5
All fields can be expanded in Fourier modes 

€ 

ϕ ( ˆ x ) =
ϕ (n )(x)

2π Rn=−∞

+∞

∑ exp i n x5

R
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( 
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+ 
, 

5-dim field ⇔ set of 4-dim fields:               Kaluza-Klein modes  

€ 

ϕ (n )(x)

Each         has a fixed momentum p5=n/R along 5th dim 

€ 

ϕ (n )

4-d space 

extra 
dimensions 

mass 

D-dim 
particle 

E2  = p 2 + p2
extra + m2 → 

KK mass 

From KK mass spectrum we can measure 
the geometry of extra dimensions 
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R

r << R r >> R 

2-d plane 1-d line 

Suppose typical energy << 1/R ⇒ 
only zero-modes can be excited 

Expand SG keeping only 
zero-modes and setting φ=1 

€ 

ˆ S G ( ˆ g MN ) = SG (g(0)
µν ) + SEM (A(0)

µ )

€ 

SG (g) =
1

16πGN

d4x −g R(g)∫

SEM (A) = −
1
4

d4x FµνF
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To obtain correct normalization: 

€ 

SG →
1

GN

=
dx5∫
ˆ G N

=
2π R

ˆ G N
SEM → κ = 16πGN

Gravity & EM unified in higher-dim space:  MIRACLE? 
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Gauge transformation has a geometrical meaning 

€ 

dˆ s 2 = ˆ g MN ( ˆ x ) dˆ x M dˆ x N

€ 

ˆ g MN ( ˆ x ) =
gµν +κ 2φ Aµ Aν κ φ Aµ

κφ Aν φ

% 
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' 

( 

) 
* ( ˆ x )

Keep only zero-modes: 

€ 

dˆ s 2 = g(0)
µν dxµ dxν + φ (0) dx 5 +κ A(0)

µ dxµ( )
2

Invariant under local  

€ 

x 5 → x 5 −κ Λ

A(0)µ → A(0)µ + ∂µΛ
(where g and φ 

do not transform) 

•  Gauge transformation is balanced by a shift in 5th dimension 

•  EM Lagrangian uniquely determined by gauge invariance 
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CHARGE QUANTIZATION 
Matter EM couplings fixed by 5-dim GR  

Consider scalar field ϕ 

€ 

S = d5 ˆ x − ˆ g ˆ g MN∂Mϕ∫ ∂Nϕ

Expand in 4-D 
KK modes: 

€ 

S = dx5 d4x −g(0) ∂µ − i nκ
R
A(0)µ
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2π R

Each KK mode n has:   mass n/R      charge    nκ/R 

•  charge quantization 

•  determination of fine-structure constant  

•  new dynamics open up at Planckian distances  

€ 

α =
κ 2

4πR2
=
4GN

R2
⇒ R =

4GN

α
≈ 4 ×10−31m = 5 ×1017 GeV( )

−1
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Not a theory of the real world 

•  φ=1 not consistent (φ dynamical field leads to 
inconsistencies: e.g. F(0)

µνF(0)µν=0 from eqs of motion) 

•  Charged states have masses of order MPl 

•  Gauge group must be non-abelian (more dimensions?)  

Nevertheless 

•  Interesting attempt to unify gravity and gauge interactions 

•  Geometrical meaning of gauge interactions 

•  Useful in the context of modern superstring theory 

•  Relevant for the hierarchy problem? 
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Usual approach: fundamental theory at MPl, while ΛW is 
a derived quantity 

Alternative: ΛW is fundamental scale, while MPl is a 
derived effect 

New approach requires •  extra spatial dimensions 

•  confinement of matter on subspaces 

Natural setting in string theory ⇒ Localization of gauge theories 
on defects (D-branes: end points 

of open strings) 

We are confined in a 4-dim world, 
which is embedded in a higher-dim 
space where gravity can propagate 
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COMPUTE NEWTON CONSTANT 

Einstein action in D dimensions 

€ 

SE
D =

1
16π ˆ G N

dD x − ˆ g R( ˆ g )∫

Assume space R4×SD-4: gµν doesn’t depend on extra coordinates 

Effective action for gµν  

€ 

SE =
VD−4

16π ˆ G N
d4 x −g R(g)∫

⇒
1

GN

=
VD−4

ˆ G N

€ 

MPl = MD RMD( )
D−4
2

€ 

ˆ G N =
1

MD
D−2

VD−4 = RD−4
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Suppose fundamental mass scale    MD ~ TeV 

€ 

MPl = MD RMD( )
D−4
2 very large if R is large (in units of MD

-1) 

€ 

5 ×10−4 eV( )−1 ≈ 0.4 mm D− 4 = 2

R = 20 keV( )−1 ≈10−5 µm D− 4 = 4

7MeV( )−1 ≈ 30 fm D− 4 = 6

Radius of 
compactified space 

•  Smallness of GN/GF related to largeness of RMD 

•  Gravity is weak because it is diluted in a large space 
(small overlap with branes) 

•  Need dynamical explanation for RMD>>1 
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€ 

V (r) = −GN
m1m2

r
1+α exp − r λ( )[ ]

λ	


α	


Gravitational interactions modified at small distances 

€ 

FN (r) =GN
m1m2

r2      at  r > R

At r < R, space is (3+δ)-dimensional      (δ=D-4) 

€ 

FN (r) = ˆ G N
(4 +δ ) m1m2

r2+δ =

= GN Rδ m1m2

r2+δ

From SN emission and 
neutron-star heating: 

MD>750 (35) TeV for δ=2(3) 
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Probing gravity at the LHC? 

Gravitational wave 
jet +  

Gravitational deflection 
dijet 

Black hole 
multiparticle event ET 

graviton 

gluon 

Gravitational phenomena into collider arena 
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WARPED GRAVITY 
A classical mechanism to make quanta softer 

For time-indep. metrics with g0µ=0 ⇒ E |g00|1/2 conserved        .                                                     
(proper time dτ2 = g00 dt2) 

€ 

Schwarzschild metric  g00 =1− 2GNM
r

⇒
Eobs − Eem

Eem

= g00 −1 = −
GNM
rem

On non-trivial metrics, we see far-away objects as red-shifted 



42 

GRAVITATIONAL RED-SHIFT 

€ 

ds2 = e−2K |y|ηµν dx
µdxν + dy 2

Masses on two branes related by 

€ 

mπR

m0

= e−πRK

Same result can be obtained 
by integrating SE over y 

€ 

R ≈10 K−1 ⇒
mπR

m0

≈
MZ

MGUT

y=0 
g00=1 

y=πR 
g00=e-2πRK 
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PHYSICAL INTERPRETATION 
•  Gravitational field configuration is non-trivial 

•  Gravity concentrated at y=0, while our world confined at y=πR 

•  Small overlap ⇒ weakness of gravity 

WARPED GRAVITY AT COLLIDERS 
•  KK masses mn = Kxne-πRK [xn roots of J1(x)] not equally spaced 

•  Characteristic mass Ke-πRK ~ TeV 

•  KK couplings 

•  KK gravitons have large mass gap and are “strongly” coupled 

•  Clean signal at the LHC from G → l+l-  € 

L = −T µν Gµν
(0)

MPl

+
Gµν
(n )

Λπn=1

∞

∑
( 

) 
* 

+ 

, 
- Λπ ≡ e

−πRKMPl ≈ TeV


