Masterclasses

The structure of the Proton & The search for the Higgs boson

Konrad Jende, HST2014

Outline

- Wrap-up 30' (09:00)
- Technical Intro 15'
- Intro to the Event Display Programme 15'
- Exercises 75' (10:00)
- Break 15' (11:15)
- Measurement 60' (11:30)
- Combination of Data 15' (12:30)
- Discussion 30' (12:45)

Aims of the workshop

You will get to know a measurement, which enables us to reveal the inner structure of the proton.

- You will get to know a measurement, which enables us to reveal the inner structure of the proton.
- You will better understand how data analysis is done in practice even though you will only analyze data in a comparable model.

- You will get to know a measurement, which enables us to reveal the inner structure of the proton.
- You will better understand how data analysis is done in practice even though you will only analyze data in a comparable model.
- You can identify particles and proton-proton collision events recorded with the LHC experiment ATLAS by their visual representation in event display programmes.

Work on Task 1!

- 1. Idea of data analysis (5-10'): Work in groups of 7 teachers. There are 12 visual representations of proton-proton collisions to be lying in front of you:
 - a) Find similarities and differences inside the pictures!
 - b) Group the events (using the similarities and differences you established beforehand)!

Introduction

ATLAS detector
Physics
W Boson
Higgs Boson

Electromagnetic Calorimeter

Electromagnetic Calorimeter

Electromagnetic Calorimeter

particle identification 5

liquid argon (–185°)

Lead, steal

particle identification 6

electrons interact by: Bremsstrahlung in priestley field ~Z²E/m²

muons interact by: ionisation photons interact by: pair creation

particle identification 6

electrons interact by: Bremsstrahlung in priestley field ~Z²E/m²

muons interact by: ionisation photons interact by: pair creation

physics 1

 \vec{p}_{P_1} ... momentum proton 1 \vec{p}_{P_1} ... momentum proton 2

interaction vertex

 \vec{p}_{Parton_1} ... momentum parton 1 \vec{p}_{Parton_2} ... momentum parton 2

physics 1

- \vec{p}_{P_1} ... momentum proton 1 \vec{p}_{P_1} ... momentum proton 2
 - interaction vertex

 \vec{p}_{Parton_1} ... momentum parton 1 \vec{p}_{Parton_2} ... momentum parton 2

Fig. 3: structure of the proton and considerations of momentum at interaction

physics 1

Fig. 3: structure of the proton and considerations of momentum at interaction

physics 2

physics 2

pick one particle

physics 2

pick one particle

Why is the W particle interesting?

W boson

fusion

application in radioactivity, medicine, arts and archeology

weak interaction allows particles to change the family

physics 3

Examples of reactions in proton collisions

Quark-Antiquark annihilation: u dbar → W

physics 3

р

p

 \swarrow

Examples of reactions in proton collisions

Quark-Antiquark annihilation: u dbar \rightarrow W

р

electron

Coase

р

W

antineutrino

Fig: proton-proton interation - quark-antiquark annihilation and W production

physics 4

physics 4

Fig.: production cross section for various particles at various centre of mass energies, from [3]

physics 4

Fig.: production cross section for various particles at various centre of mass energies, from [3]

physics 4

#
physics 5

decay - W Boson

W Boson

life time: $\approx 10^{-25} \text{ s}$ mass: $80.39 \pm 0.02 \text{ GeV/c}^2$

 decay rates (in %):

 hadronic:
 67.6%

 leptonic:
 32.4% (from that e,μ: 21.3%)

physics 5

Fig.: Feynman diagrams of leptonic decays of the W boson

W Boson

 life time:
 $\approx 10^{-25} s$

 mass:
 $80.39 \pm 0.02 \text{ GeV/c}^2$

decay rates (in %): hadronic: 67.6% leptonic: 32.4% (from that e,µ: 21.3%)

physics 6

Produktion und Zerfall - W-Boson

Fig.: quarka-antiquark annihilation, production and decay of W particle

physics 6

Produktion und Zerfall - W-Boson

Fig.: quarka-antiquark annihilation, production and decay of W particle

Your task:

physics 6

Produktion und Zerfall - W-Boson

Fig.: quarka-antiquark annihilation, production and decay of W particle

Your task:

1. Find collision events showing production and decay of W particles!

physics 6

Produktion und Zerfall - W-Boson

Fig.: quarka-antiquark annihilation, production and decay of W particle

Your task:

- 1. Find collision events showing production and decay of W particles!
- 2. Determine in such events the electric charge of the W particle!

physics 6

Produktion und Zerfall - W-Boson

Fig.: quarka-antiquark annihilation, production and decay of W particle

Your task:

- 1. Find collision events showing production and decay of W particles!
- 2. Determine in such events the electric charge of the W particle!
- 3. Calculate the ratio of number of events of electrically positively to negatively charged W particles more specific: $R \pm = |W^+|/|W^-|$

physics 6

Produktion und Zerfall - W-Boson

Fig.: quarka-antiquark annihilation, production and decay of W particle

Your task:

- 1. Find collision events showing production and decay of W particles!
- 2. Determine in such events the electric charge of the W particle!
- 3. Calculate the ratio of number of events of electrically positively to negatively charged W particles more specific: $R \pm = |W^+|/|W^-|$

Which value do you expect for R±?

physics 7

properties of events with decaying W particle

Zerfall - W-Boson

physics 7

properties of events with decaying W particle

Zerfall - W-Boson

physics 7

properties of events with decaying W particle

exactly one high energetic, electrically charged lepton [either muon (resp. antimyon) or electron (resp. positron)]

Zerfall - W-Boson

physics 7

properties of events with decaying W particle

exactly one high energetic, electrically charged lepton [either muon (resp. antimyon) or electron (resp. positron)]

missing transverse momentum

Zerfall - W-Boson

physics 7

properties of events with decaying W particle

exactly one high energetic, electrically charged lepton [either muon (resp. antimyon) or electron (resp. positron)]

missing transverse momentum

electrically charged lepton should be isolated from jets

Zerfall - W-Boson

physics 9

Fig.: quark-antiquark annihilation, production and leptonic decay of W particle

physics 9

signal

Fig.: quark-antiquark annihilation, production and leptonic decay of W particle

physics 9

Fig.: quark-antiquark annihilation, production and leptonic decay of W particle

A signal event marks a particular physical process (e.g. production of a W particle)

Another process, who leaves a identical signal in the detector but has originally to be allocated to another process, is called background event.

There is no chance in distinguishing both when looking at a single event!

Fig.: quark-antiquark annihilation, production and leptonic decay of W particle

A signal event marks a particular physical process (e.g. production of a W particle)

Another process, who leaves a identical signal in the detector but has originally to be allocated to another process, is called background event.

There is no chance in distinguishing both when looking at a single event!

Fig.: Background events to leptonic W decay

Fig.: quark-antiquark annihilation, production and leptonic decay of W particle

A signal event marks a particular physical process (e.g. production of a W particle)

Another process, who leaves a identical signal in the detector but has originally to be allocated to another process, is called background event.

There is no chance in distinguishing both when looking at a single event!

Fig.: Background events to leptonic W decay

physics 9

Fig.: quark-antiquark annihilation, production and leptonic decay of W particle

A signal event marks a particular physical process (e.g. production of a W particle)

Another process, who leaves a identical signal in the detector but has originally to be allocated to another process, is called background event.

There is no chance in distinguishing both when looking at a single event!

Fig.: Background events to leptonic W decay

physics 10

properties of events with decaying W particle

properties of events with decaying W particle

properties of events with decaying W particle

properties of events with decaying W particle

Fig.: production cross section of muons vs transverse momentum, [1]

properties of events with decaying W particle

physics 10

Fig.: production cross section of muons vs transverse momentum, [1]

properties of events with decaying W particle

physics 10

Fig.: production cross section of muons vs transverse momentum, [1]

properties of events with decaying W particle

physics 10

Fig.: production cross section of muons vs transverse momentum, [1]

properties of events with decaying W particle

exactly one high energetic, electrically charged lepton [either muon (resp. antimyon) or electron (resp. positron)] with p_T > 20 GeV

physics 10

Fig.: production cross section of muons vs transverse momentum, [1]

properties of events with decaying W particle

exactly one high energetic, electrically charged lepton [either muon (resp. antimyon) or electron (resp. positron)] with p_T > 20 GeV

missing transverse momentum with MET > 20 GeV

physics 10

Fig.: production cross section of muons vs transverse momentum, [1]

properties of events with decaying W particle

exactly one high energetic, electrically charged lepton [either muon (resp. antimyon) or electron (resp. positron)] with p_T > 20 GeV

missing transverse momentum with MET > 20 GeV

electrically charged lepton should be isolated from jets

physics 10

Fig.: production cross section of muons vs transverse momentum, [1]

physics 11

Produktion - H-Boson

Abb. 14: Feynman–Diagramme zur Erzeugung eines Higgs–Boson

physics 11

Produktion - H-Boson

Abb. 14: Feynman-Diagramme zur Erzeugung eines Higgs-Boson

physics 11

Abb. 14: Feynman-Diagramme zur Erzeugung eines Higgs-Boson

physics 11

Abb. 14: Feynman-Diagramme zur Erzeugung eines Higgs-Boson

physics 11

Abb. 14: Feynman–Diagramme zur Erzeugung eines Higgs–Boson

physics 11

physics 12

Decay - H Boson

H-Boson Lebensdauer: $\approx 10^{-25}$ s Masse: 125 GeV/c²

physics 12

Decay - H Boson

H-Boson Lebensdauer: $\approx 10^{-25}$ s Masse: 125 GeV/c²

Fig.: branching ratio of Higgs decay vs Higgs mass

physics 12

Decay - H Boson

H-Boson Lebensdauer: $\approx 10^{-25}$ s Masse: 125 GeV/c²

Fig.: branching ratio of Higgs decay vs Higgs mass

physics 12

Decay - H Boson

H-Boson Lebensdauer: $\approx 10^{-25}$ s Masse: 125 GeV/c²

Fig.: Feynman graph of production and decay of Higgs boson

Fig.: branching ratio of Higgs decay vs Higgs mass

physics 13

Challenges in the search $H \rightarrow WW$

physics 13

Challenges in the search $H \rightarrow WW$

Fig.: production cross section for signal and background events of the Higgs search

physics 13

Challenges in the search $H \rightarrow WW$

Fig.: production cross section for signal and background events of the Higgs search

physics 13

Challenges in the search $H \rightarrow WW$

Fig.: Signal (top) vs background (bottom)

Fig.: production cross section for signal and background events of the Higgs search

physics 14

physics 14

physics 14

physics 14

properties of events with decaying Higgs bosons in the decay channel H \rightarrow WW \rightarrow IvIv + n·Jets (n=0,1)

physics 14

properties of events with decaying Higgs bosons in the decay channel H \rightarrow WW \rightarrow IvIv + n·Jets (n=0,1)

exactly two high-energetic, opppositely electrically charged leptons [either muon and (or) antimuon or (and) positron and (or) electron)] with pT,lead>20 GeV/c and pT,sub>10 GeV/c

physics 14

properties of events with decaying Higgs bosons in the decay channel H \rightarrow WW \rightarrow IvIv + n·Jets (n=0,1)

exactly two high-energetic, opppositely electrically charged leptons [either muon and (or) antimuon or (and) positron and (or) electron)] with pT,lead>20 GeV/c and pT,sub>10 GeV/c

missing transverse momentum with E_{T,miss}>20GeV (if leptons come from different families, e.g. electron and antimyon) or E_{T,miss}>40GeV (if leptons come from the same family, e.g. electron and positron)

physics 14

properties of events with decaying Higgs bosons in the decay channel H \rightarrow WW \rightarrow IvIv + n·Jets (n=0,1)

exactly two high-energetic, opppositely electrically charged leptons [either muon and (or) antimuon or (and) positron and (or) electron)] with pT,lead>20 GeV/c and pT,sub>10 GeV/c

missing transverse momentum with E_{T,miss}>20GeV (if leptons come from different families, e.g. electron and antimyon) or E_{T,miss}>40GeV (if leptons come from the same family, e.g. electron and positron)

Ieptons are isolated from Jets - but there can be a jet in the event

physics 15

Question: How can one find the Higgs boson in this decay channel when the background is so heavy?

physics 15

Question: How can one find the Higgs boson in this decay channel when the background is so heavy?

Measure the angle ($\Delta \phi_{\parallel}$) between the two electrically charged leptons in transverse plane

physics sum

physics sum

physics sum

strategies, methods and tools for searches are very different

events containing exactly one W particle (high-energetic, electrically charged lepton with p_T>20 GeV/c isolated from Jets, Neutrino with E_{T,miss}>20GeV)

physics sum

strategies, methods and tools for searches are very different

events containing exactly one W particle (high-energetic, electrically charged lepton with p_T>20 GeV/c isolated from Jets, Neutrino with E_{T,miss}>20GeV)

search for the Higgs is performed in many decay scenarios, for example $H \rightarrow WW$

physics sum

- events containing exactly one W particle (high-energetic, electrically charged lepton with p_T>20 GeV/c isolated from Jets, Neutrino with E_{T,miss}>20GeV)
- search for the Higgs is performed in many decay scenarios, for example $H \rightarrow WW$
- events containing exactly two W particles (two oppositely electrically charged leptons with p_{T,lead}>20 GeV/c and p_{T,sub}>10 GeV/c isolated from Jets, Neutrinos with E_{T,miss}>20GeV resp. E_{T,miss}>40GeV (latter: if leptons arise from the same family))

physics sum

- events containing exactly one W particle (high-energetic, electrically charged lepton with p_T>20 GeV/c isolated from Jets, Neutrino with E_{T,miss}>20GeV)
- search for the Higgs is performed in many decay scenarios, for example $H \rightarrow WW$
- events containing exactly two W particles (two oppositely electrically charged leptons with p_{T,lead}>20 GeV/c and p_{T,sub}>10 GeV/c isolated from Jets, Neutrinos with E_{T,miss}>20GeV resp. E_{T,miss}>40GeV (latter: if leptons arise from the same family))
 - these come in 10-20% from the Higgs decay

physics sum

- events containing exactly one W particle (high-energetic, electrically charged lepton with p_T>20 GeV/c isolated from Jets, Neutrino with E_{T,miss}>20GeV)
- search for the Higgs is performed in many decay scenarios, for example $H \rightarrow WW$
- events containing exactly two W particles (two oppositely electrically charged leptons with p_{T,lead}>20 GeV/c and p_{T,sub}>10 GeV/c isolated from Jets, Neutrinos with E_{T,miss}>20GeV resp. E_{T,miss}>40GeV (latter: if leptons arise from the same family))
- these come in 10-20% from the Higgs decay
- statistical scrutiny with the help of distinguishing variables (such as the opening angle between the electrically charged leptons) allow discoveries

Outline

- Wrap-up 30' (09:00)
- Technical Intro 15'
- Intro to the Event Display Programme 15'
- Exercises 75' (10:00)
- Break 15' (11:15)
- Measurement 60' (11:30)
- Combination of Data 15' (12:30)
- Discussion 30' (12:45)

Part 2 - Exercises

Preparation 1

What do you need?

* computer access (CERN laptops):

- * user name: teacherg
- * password: Einstein1879

 * Event Display 'MINERVA' (application 'atlantis' to be started from desktop)

Part 2 - Exercises

Preparation 2

What do you need?

- * website: http://www.cern.ch/kjende/en/wpath.htm
- * data samples (2A.zip ... 2T.zip)
- * tally sheet

Preparation of analysis

* 1.8.10¹⁵ collisions were recorded by ATLAS (28.03.2014)

- * 1.8.10¹⁵ collisions were recorded by ATLAS (28.03.2014)
- * events to be analyzed were pre-selected

- * $1.8 \cdot 10^{15}$ collisions were recorded by ATLAS (28.03.2014)
- * events to be analyzed were pre-selected
 * time constraints

- * 1.8.10¹⁵ collisions were recorded by ATLAS (28.03.2014)
- * events to be analyzed were pre-selected
 - * time constraints
 - * different skills in programming

Preparation 4

Part 2 - Exercises

Preparation 4

Event Display
particle identification with exercise
event classification with exercise

Outline

- Wrap-up 30' (09:00)
- Technical Intro 15'
- Intro to the Event Display Programme 15'
- Exercises 75' (10:00)
- Break 15' (11:15)
- Measurement 60' (11:30)
- Combination of Data 15' (12:30)
- Discussion 30' (12:45)

Tasks

Tasks

Tasks

1. Measure the ratio of the numbers of events containing a positivly electrically charged W particle to the number of events containing a negatively charged W particle (R±).

Tasks

Tasks

1. Measure the ratio of the numbers of events containing a positivly electrically charged W particle to the number of events containing a negatively charged W particle (R±).

2. What does the result mean for the inner structure of the proton?

Tasks

Tasks

1. Measure the ratio of the numbers of events containing a positivly electrically charged W particle to the number of events containing a negatively charged W particle (R±).

2. What does the result mean for the inner structure of the proton?

3. Pick all events containing two W particles (coming from the same vertex).

Tasks

Tasks

1. Measure the ratio of the numbers of events containing a positivly electrically charged W particle to the number of events containing a negatively charged W particle (R±).

2. What does the result mean for the inner structure of the proton?

3. Pick all events containing two W particles (coming from the same vertex).

4. Look at the angular distribution and say something about the discovery potential of your search.

Tally sheet

important Code; this is the name of the data sample you are supposed to analyze

If you find a WW candidate please fill in the angle between the electrically charged leptons here

sum up

Tally sheet

important Code; this is the name of the data sample you are supposed to analyze

If you find a WW candidate please fill in the angle between the electrically charged leptons here

sum up

Fig. Tally sheet for W measurement

Measurement

Enjoy your first LHC data analysis

Outline

- Wrap-up 30' (09:00)
- Technical Intro 15'
- Intro to the Event Display Programme 15'
- Exercises 75' (10:00)
- Break 15' (11:15)
- Measurement 60' (11:30)
- Combination of Data 15' (12:30)
- Discussion 30' (12:45)

Part 5 - appendix

further readings

- [1] The ATLAS Collaboration: Measurement of the muon inclusive cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector, 21.11.2011, Link.
- [2] The ATLAS Collaboration: Measurement of the W->Inu and Z/gamma*->II production cross sections in proton-proton collisions at sqrt(s) = 7 TeV with the ATLAS detector, 9.10.2010
- [3] The ATLAS Collaboration: ATLAS high-level trigger, data-acquisition and controls : Technical Design Report. Geneva, CERN, 2003.
- [4] Joe Incandela on behalf od the CMS Collaboration: Status of the CMS SM Higgs Search. CERN-Seminar, July 4 2012. Link: https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile? <u>docid=6125&filename=CMS_4July2012_Incandela.pdf</u>

Part 5 - appendix

Webseiten

[www1]	http://www.cern.ch/kjende/de/wpath.htm - Webseite zur ATLAS W-Messung bei Masterclasses
[www2]	http://www.cern.ch/kjende/de/wpath_teilchenid1.htm - Webseite mit interaktivem Applet zur Teilchenidentifikation in ATLAS
[www3]	<u>http://www.cern.ch/kjende/de/downloads/minerva2012.zip</u> - Link zum Herunterladen des Event Display Programms MINERVA
[www4]	http://www.atlas.ch - offizielle Webseite des ATLAS-Experimentes mit sehr guter Multimedia-Abteilung
[www5]	http://www.physicsmasterclasses.org - Informationen zu den Internationalen Masterclasses
[www6]	http://www.teilchenwelt.de - Webseite des deutschen Netzwerk Teilchenwelt mit Informationen zur Beteiligung im Netzwerk, Veranstaltungen (Teilchenwelt-Masterclasses und Cosmic Workshops) auch an Ihrer Schule uvm.