Transverse momentum dependent gluon density from DIS precision data

H. Jung (DESY, Uni Antwerp) F. Hautmann (Uni Oxford)

- Why gluon TMDs?
- How can gluon TMDs be determined?
	- CCFM gluon uPDF \bullet
	- fits to inclusive DIS and uncertainties
- Description of hard processes at the LHC? \bullet

Upsilon production

 $g^* g^* \to \Upsilon g, \ g^* g^* \to \chi_b \to \Upsilon + X$

CMS Phys.Lett. B727 (2013)101, 1303.5900 Measurement of the Y(1S), Y(2S), and Y(3S) cross sections in pp collisions at $s\sqrt{ } = 7$ TeV

- Using TMDs with off-shell ME gives rather good description, without further tuning
- NNLO CSM is not as good !

H. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014 2

How to obtain TMDs? CCFM approach

• Color coherence requires angular ordering instead of p_t ordering ...

 $q_i > z_{i-1}q_{i-1}$ with

- \rightarrow recover DGLAP with q ordering at medium and large x
- \rightarrow at small x, no restriction on q p_{ti} can perform a random walk \rightarrow splitting fct:

$$
\tilde{P}_g(z, q, k_t) = \bar{\alpha}_s \left[\frac{1}{1-z} - 1 + \frac{z(1-z)}{2} + \left(\frac{1}{z} - 1 + \frac{z(1-z)}{2} \right) \Delta_{ns} \right]
$$

$$
\log \Delta_{ns} = -\bar{\alpha}_s \int_0^1 \frac{dz'}{z'} \int \frac{dq^2}{q^2} \Theta(k_t - q) \Theta(q - z' p_t)
$$

CataniCiafaloniFioraniMarchesini evolution forms a bridge between DGLAP and **BFKL** evolution

I. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014 3

For precision predictions need precision (small x) TMDs with uncertainties !

Evolution equation and TMDs

 $x\mathcal{A}(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta_s(q) + \int dz \int \frac{dq'}{q'} \cdot \frac{\Delta_s(q)}{\Delta_s(q')} \tilde{P}(z,k_t,q') \frac{x}{z} \mathcal{A}\left(\frac{x}{z},q'\right)$ • solve integral equation via iteration:

 $x\mathcal{A}_0(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta(q)$ from q'to q
w/o branching from q_o to q'
w/o branching branching at q' $x\mathcal{A}_1(x,k_t,q) = x\mathcal{A}(x,k_t,q_0)\Delta(q) + \int \frac{dq'}{\rho'} \frac{\Delta(q)}{\Delta(q')} \int dz \tilde{P}(z) \frac{x}{z} \mathcal{A}(x/z,k_t',q_0)\Delta(q')$

Note: evolution equation formulated with Sudakov form factor is equivalent to "plus" prescription, but better suited for numerical solution for treatment of kinematics

small x TMDs from $F_2(x,Q^2)$ – general case

$$
\frac{d\sigma}{dxdQ^2} \quad = \quad \int dx_g \big[dk_\perp^2 x_g \mathcal{A}_i(x_g, k_\perp^2, p)\big] \\ \times \hat{\sigma}(x_g, k_\perp^2, x, \mu_f^2, Q^2)
$$

 $\hat{\sigma}(x_g, k_\perp^2, x, \mu_f^2, Q^2)$ is (off-shell, k_t -dependent) hard scattering cross section

• until now, only gluon TMDs were determined

• valence quarks from starting distribution of HERAPDF or CTEQ6

$$
xQ_v(x, k_t, p) = xQ_{v0}(x, k_t, p) + \int \frac{dz}{z} \int \frac{dq^2}{q^2} \Theta(p - zq)
$$

$$
\times \quad \Delta_s(p, zq)P(z, k_t) \ xQ_v\left(\frac{x}{z}, k_t + (1 - z)q, q\right)
$$

$$
P(z, k_t) = \bar{\alpha}_s \left(k_t^2\right) \frac{1 + z^2}{1 - z}
$$

I. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014 6

Why off-shell matrix elements?

- **•** Behavior of ME as function of k_t :
	- for small k_t converges to collinear result
	- for large k_t has suppression ۰
	- suppression appears at → "standard factorization scale": $Q^2 + 4 m^2$
	- collinear factorization: \bullet $\mu^2 \sim Q^2 + 4 m^2$: $\frac{1}{2}$

$$
\int_0^{\boldsymbol{\mu}} \ d k_\perp \hat{\sigma}(k_\perp,...)
$$

Determination of TMDs (uPDFs)

- Apply formalism to describe HERA F₂ measurements
	- start with gluon only for small x
	- CCFM with full angular ordering \rightarrow no k_t ordering at small x
	- include valence quarks (for large x)
	- starting distribution for gluon at q_0 :

$$
x\mathcal{A}_0(x, k_\perp) \;\; = \;\; Nx^{-B} \cdot (1-x)^C \left(1 - Dx + E\sqrt{x} \right) \exp[-k_t^2/\sigma^2]
$$

• starting distribution for valence quarks at q_0 :

$$
xQ_{v0}(x, k_t, p) = xQ_{v0}(x, k_t, q_0)\Delta_s(p, q_0)
$$

\n
$$
xQ_{v0}(x, k_t, q_0) = xQ_{v \text{coll.pdf}}(x, q_0) \exp[-k_t^2/\sigma^2]
$$

\nwith $\sigma^2 = q_0^2/2$

F. Hautmann and H. Jung. Transverse momentum dependent gluon density from DIS precision data. arXiv 1312.7875 Nuclear Physics B, 883:1, 2014.

From HERA: small x improved gluon TMD

- $F_2c(x,Q^2)$: $Q^2 \ge 2.5$ GeV
- $F_2(x,Q^2)$: $x \le 0.005$, $Q^2 \ge 5$ GeV
- very good χ^2/ndf obtained (~ 1)

F. Hautmann and H. Jung. Transverse momentum dependent gluon density from DIS precision data. arXiv 1312.7875 Nuclear Physics B, 883:1, 2014.

9

I. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014

TMD - integrated

dependent gluon density from DIS precision data.
arXiv 1312.7875 Nuclear Physics B, 883:1, 2014. $p^2 = 25 \text{ GeV}^2$ $\frac{10^2}{25}$
x9(x,p²) $p^2 = 25 \text{ GeV}^2$ $xt(x,p^2)$ gluon: JH-2013-set1 up-val: JH-2013-set1 0.9 aluon: set A0 up-val: CTEQ66 aluon: CTEQ66 down-val: JH-2013-set1 0.8 down-val: CTEQ66 0.7 10 0.6 0.5 0.4 1 0.3 0.2 0.1 Ω 10^{-1} 10^{-3} 10^{-2} 10^{-3} 10^{-1} 10^{-2} 10^{-4} 10^{-4} 10^{-1} \mathbf{x}^1 \mathbf{x}^1

CCFM gluon is different from standard collinear gluon, since no sea quarks are directly included in fit (treated only via $q \rightarrow qq$)

• valence quarks in CCFM are similar to CTEQ, but evolution is different due to different α_s

I. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014

F. Hautmann and H. Jung. Transverse momentum

CCFM gluon from F_2 and $F_2 \& F_2^c$ fit

Fit function:

$$
\begin{array}{lcl} \mathsf{l}_0(x) & = & N_g x^{-B_g} (1-x)^{C_g} \\ & \times (1-D_g x \\ & & + E_g \sqrt{x} + F_g x^2) \end{array}
$$

- only 3 params used in fit: no significant change for more params
- \bullet 2-loop α_s
- gluon splitting function with nonsingular terms

 \bullet fits:

- set 1: F_2 : Q² > 5 GeV, $x \le 0.005$
- set 2: $F_2 \& F_2$: Q² > 2.5 GeV
- new fit gives $\chi^2/ndf \sim 1.2$
- details are different from previous uPDF set A₀

I. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014 11

uncertainties of CCFM gluon

small k_t , small p^2

- experimental uncertainties result in 10-20 % for gluon uncertainty at medium and large x
- small uncertainties at small x
- NEW: factorization and renormalisation scale uncertainties
	- fit with shifted scales \bullet
	- large at large x, since no constrain from data: $x<0.005$, $Q^2 > 5$ GeV²
	- dominant uncertainties →

I. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014 12

uncertainties of CCFM gluon

large k_t , large p^2

- experimental uncertainties result in 10-20 % for gluon uncertainty at medium and large x
- small uncertainties at small x
- NEW: factorization and renormalisation scale uncertainties
	- fit with shifted scales \bullet
	- large at large x, since no constrain from data: $x<0.005$, $Q^2 > 5$ GeV²
	- dominant uncertainties →

I. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014 13

TMDs and the general pp case

Application to $W + jet$ production at LHC

I. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014

Conclusion

- TMD uPDFs are important \bullet
	- effects form transverse momentum in small x processes (Υ production etc) \bullet but also in higher x processes (W+2jets, etc)
	- precision determination of CCFM TMD-gluon from inclusive DIS HERA data \bullet
		- now with model- and experimental uncertainties
- CCFM TMD gives a consistent recipe for initial state parton shower \bullet
	- no kinematic corrections are needed ٠

Backup Slides

TMD and small x factorization

small-x formalism(s):

evolution equations in $log(1/x) \sim$ rapidity

 \star BFKL, CCFM

- gluon saturation → nonlinear evolution: BK, JIMWLK
- primary quantities are not parton distributions, but
	- impact factors, BFKL kernel, dipole scattering amplitude \star and generalizations (formulated in terms of Wilson lines)

M. Diehl

Parton distributions

26

Initial state parton showers using uPDFs

- Backward evolution from hard scattering towards proton
- No change in kinematics of hard scattering, since k_t of initial state partons treated by uPDF
- In all branchings kinematics are constraint by uPDF
- using the same frame for uPDF evolution and parton shower, no free or additional parameters are left for shower

Charged particle spectra as fct of p^* _t in DIS

H1 Coll. EPJC 73 (2013) 2406

- particle spectra as fct of p^* give constraints on hardness of partons in parton shower
- collinear shower models (RAPGAP) generate too soft spectra compared to measurement
- small x improved (CCFM) shower (CASCADE) and CDM (DJANGOH) generate harder spectrum \rightarrow closer to measurement at large p^*

I. Jung, F. Hautmann, Transverse momentum dependent gluon density, TMD workshop, Antwerp, 23 Junel 2014 20

Kinematic effects in PDF determination

 1.2

 0.8

 0.6

 0.4

 0.2

 -3.5

Determination of parton density functions using Monte Carlo event generator Federicon Samson-Himmelstjerna /afs/desy.de/group/h1/psfiles/theses/h1th-516.pdf

 $Q^2 = 10 \text{ GeV}^2$

FIT PYTHIA no ps

FIT PYTHIA int kt

FIT PYTHIA ips

FIT PYTHIA fps

FIT PYTHIA ifps

 -1.5

 -1

 -0.5 0
 $log(x)$

 $xds(x, Q^2)$

 2.5

 1.5

 0.5

 -3.5

-a

 -2.5

 -2

 $Q^2 = 100 \text{ GeV}^2$

FIT PYTHIA no ps

FIT PYTHIA int kt

FIT PYTHIA ips

FIT PYTHIA fps

FIT PYTHIA ifps

 -1.5

FIT PYTHIA no ps

FIT PYTHIA int kt

FIT PYTHIA ips FIT PYTHIA fps

FIT PYTHIA ifps

 -1.5

 -1

 -0.5

 -0.5

 $log(x)$

 $log(x)$

- \bullet perform fits to $F₂$ using a Monte Carlo event generator which includes parton showers and intrinsic k_t
- the resulting PDFs agree with standard LO ones if no PS and intrinsic k_t is applied.
- the final PDFs are different because of kinematic effects coming from transverse momenta of PS and intrinsic k_t

 -2.5

 -2

l. Jung, F. Hautmann, Transverse momentum d

Transverse momentum effects in pp

- Transverse momentum effects are relevant for many processes at **LHC**
- parton shower matched with NLO (POWHEG) generates additional k_t , leading to energy-momentum mismatch
- Transverse momentum effects are visible in high pt processes, not only at small x

22

H. Jung, F. Hautmann, Transverse momentum dependent giuon density, Tivid worksnop, Antwerp, 20 Juner 2014